{"title":"新型弧形源负电容可重构晶体管","authors":"Hongbo Ye;Junfeng Hu;Xinyu Zou;Zihan Sun;Xianglong Li;Yang Shen;Ziyu Liu;Xiaojin Li;Yanling Shi;Zhigang Mao;Yabin Sun","doi":"10.1109/TNANO.2025.3531844","DOIUrl":null,"url":null,"abstract":"Novel negative capacitance reconfigurable field effect transistor with arch-shaped source (NC-ESRFET) is proposed in this work. The performance is evaluated by combining 3D TCAD simulation with Laudau-Khalatnikov equation. Because of the amplified vertical electric field, the negative capacitance induced by ferroelectric (FE) layer improves the vertical line tunneling around the embedded source, and an enhanced NC effect is found in proposed NC-ESRFET, no matter for N-type or P-type program. Compared to the conventional nanowire negative capacitance RFET (NC-RFET), a larger critical FE layer thickness and lower subthreshold swing (<italic>SS</i>) are obtained in NC-ESRFE, and the lowest <italic>SS</i> is lower than 43 mV/dec and average SS is 63 mV/dec, which declines by 33% compared with NC-RFET. Besides, the diameter of embedded source <italic>D<sub>AS</sub></i> has greater influence on NC enhancement than the length <italic>L<sub>AS</sub></i>. By reasonably choosing the structure parameters, a 54.4% improvement on driven current and 14.3% decline in <italic>SS</i> is obtained in the optimized NC-ESRFET. The results here demonstrate the great attentions of NC-ESRFET in future low power application.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"24 ","pages":"209-215"},"PeriodicalIF":2.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Negative Capacitance Reconfigurable Transistor With Arch-Shaped Source\",\"authors\":\"Hongbo Ye;Junfeng Hu;Xinyu Zou;Zihan Sun;Xianglong Li;Yang Shen;Ziyu Liu;Xiaojin Li;Yanling Shi;Zhigang Mao;Yabin Sun\",\"doi\":\"10.1109/TNANO.2025.3531844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Novel negative capacitance reconfigurable field effect transistor with arch-shaped source (NC-ESRFET) is proposed in this work. The performance is evaluated by combining 3D TCAD simulation with Laudau-Khalatnikov equation. Because of the amplified vertical electric field, the negative capacitance induced by ferroelectric (FE) layer improves the vertical line tunneling around the embedded source, and an enhanced NC effect is found in proposed NC-ESRFET, no matter for N-type or P-type program. Compared to the conventional nanowire negative capacitance RFET (NC-RFET), a larger critical FE layer thickness and lower subthreshold swing (<italic>SS</i>) are obtained in NC-ESRFE, and the lowest <italic>SS</i> is lower than 43 mV/dec and average SS is 63 mV/dec, which declines by 33% compared with NC-RFET. Besides, the diameter of embedded source <italic>D<sub>AS</sub></i> has greater influence on NC enhancement than the length <italic>L<sub>AS</sub></i>. By reasonably choosing the structure parameters, a 54.4% improvement on driven current and 14.3% decline in <italic>SS</i> is obtained in the optimized NC-ESRFET. The results here demonstrate the great attentions of NC-ESRFET in future low power application.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"24 \",\"pages\":\"209-215\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10848140/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10848140/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Novel Negative Capacitance Reconfigurable Transistor With Arch-Shaped Source
Novel negative capacitance reconfigurable field effect transistor with arch-shaped source (NC-ESRFET) is proposed in this work. The performance is evaluated by combining 3D TCAD simulation with Laudau-Khalatnikov equation. Because of the amplified vertical electric field, the negative capacitance induced by ferroelectric (FE) layer improves the vertical line tunneling around the embedded source, and an enhanced NC effect is found in proposed NC-ESRFET, no matter for N-type or P-type program. Compared to the conventional nanowire negative capacitance RFET (NC-RFET), a larger critical FE layer thickness and lower subthreshold swing (SS) are obtained in NC-ESRFE, and the lowest SS is lower than 43 mV/dec and average SS is 63 mV/dec, which declines by 33% compared with NC-RFET. Besides, the diameter of embedded source DAS has greater influence on NC enhancement than the length LAS. By reasonably choosing the structure parameters, a 54.4% improvement on driven current and 14.3% decline in SS is obtained in the optimized NC-ESRFET. The results here demonstrate the great attentions of NC-ESRFET in future low power application.
期刊介绍:
The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.