动态热电发电使效率提高50%,在最大功率

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Dario Narducci, Federico Giulio, Antonio Mazzacua
{"title":"动态热电发电使效率提高50%,在最大功率","authors":"Dario Narducci,&nbsp;Federico Giulio,&nbsp;Antonio Mazzacua","doi":"10.1016/j.mtphys.2025.101713","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoelectric generators are devices capable to convert heat into electric power with no moving part. However, and despite a tremendous research effort on materials, their conversion efficiency is still limited, especially in the low temperature range where most of the discarded heat is available. We show that the exact solution of the time-dependent Domenicali’s equation predicts that, when the temperature difference across the thermoelectric legs is modulated in time, efficiency at maximum power (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mtext>MP</mtext></mrow></msub></math></span>) improves by up to 50% compared to the stationary case — with a power output equivalent to that attainable by doubling the material figure of merit. Building on this evidence, we additionally show how, even for sources delivering heat at a constant rate, simple heat flux pre-processing leads to a comparable <span><math><msub><mrow><mi>η</mi></mrow><mrow><mtext>MP</mtext></mrow></msub></math></span> improvement. Since the operational mode we propose is material-agnostic and does not require changes of the device layout, it could find prompt application.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101713"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic thermoelectric generation enables 50% increase of efficiency at maximum power\",\"authors\":\"Dario Narducci,&nbsp;Federico Giulio,&nbsp;Antonio Mazzacua\",\"doi\":\"10.1016/j.mtphys.2025.101713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoelectric generators are devices capable to convert heat into electric power with no moving part. However, and despite a tremendous research effort on materials, their conversion efficiency is still limited, especially in the low temperature range where most of the discarded heat is available. We show that the exact solution of the time-dependent Domenicali’s equation predicts that, when the temperature difference across the thermoelectric legs is modulated in time, efficiency at maximum power (<span><math><msub><mrow><mi>η</mi></mrow><mrow><mtext>MP</mtext></mrow></msub></math></span>) improves by up to 50% compared to the stationary case — with a power output equivalent to that attainable by doubling the material figure of merit. Building on this evidence, we additionally show how, even for sources delivering heat at a constant rate, simple heat flux pre-processing leads to a comparable <span><math><msub><mrow><mi>η</mi></mrow><mrow><mtext>MP</mtext></mrow></msub></math></span> improvement. Since the operational mode we propose is material-agnostic and does not require changes of the device layout, it could find prompt application.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"54 \",\"pages\":\"Article 101713\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-04-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000690\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000690","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热电发电机是一种没有活动部件就能将热能转化为电能的装置。然而,尽管对材料进行了大量的研究,但它们的转换效率仍然有限,特别是在大部分废弃热量可用的低温范围内。我们表明,时间相关的多梅尼卡利方程的精确解预测,当热电腿上的温差随时间调制时,与固定情况相比,最大功率效率(ηMPηMP)提高了高达50% -功率输出相当于将材料性能数字加倍所能达到的功率输出。在此证据的基础上,我们还展示了即使对于以恒定速率提供热量的源,简单的热通量预处理如何导致可比的η - mpη - mp改善。由于我们提出的工作模式是材料无关的,不需要改变设备布局,因此可以迅速得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic thermoelectric generation enables 50% increase of efficiency at maximum power
Thermoelectric generators are devices capable to convert heat into electric power with no moving part. However, and despite a tremendous research effort on materials, their conversion efficiency is still limited, especially in the low temperature range where most of the discarded heat is available. We show that the exact solution of the time-dependent Domenicali’s equation predicts that, when the temperature difference across the thermoelectric legs is modulated in time, efficiency at maximum power (ηMP) improves by up to 50% compared to the stationary case — with a power output equivalent to that attainable by doubling the material figure of merit. Building on this evidence, we additionally show how, even for sources delivering heat at a constant rate, simple heat flux pre-processing leads to a comparable ηMP improvement. Since the operational mode we propose is material-agnostic and does not require changes of the device layout, it could find prompt application.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信