化学计量学辅助提高电化学生物传感器检测 miRNA 的性能

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Wanda Cimmino, Simona Esposito, Panagiota M. Kalligosfyri, Nunzia Iaccarino, Stefano Cinti
{"title":"化学计量学辅助提高电化学生物传感器检测 miRNA 的性能","authors":"Wanda Cimmino, Simona Esposito, Panagiota M. Kalligosfyri, Nunzia Iaccarino, Stefano Cinti","doi":"10.1021/acs.analchem.4c05402","DOIUrl":null,"url":null,"abstract":"Chemometrics represents a potent tool for optimizing the experimental setup and subsequently boosting the performance of analytical methods. In particular, design of experiments (DoE) allows the experimental conditions to be optimized with high accuracy and a lower number of experiments when compared with the classical univariate approach, also known as one variable at a time (OVAT), which provides only a partial understanding on how factors affect the response. In this work, DoE was exploited, specifically a D-optimal design was used, to improve the analytical performance of a hybridization-based paper-based electrochemical biosensor, taking as target of the study the miRNA-29c (miR-29c) that is related to triple negative breast cancer. The sensing platform is composed of six variables to be optimized, including both those related to the sensor’s manufacture (i.e., gold nanoparticles, immobilized DNA probe) and those related to the working conditions (i.e., ionic strength, probe-target hybridization, electrochemical parameters). The adoption of DoE allowed us to optimize the device using only 30 experiments with respect to the 486 that would have been required with the OVAT approach, and as a consequence of the more accurate optimal conditions that have been reached, the detection of miRNA was more sensitive and repeatable when compared with previous data reported using the univariate approach for optimization, leading to a 5-fold limit of detection (LOD) improvement toward miRNA. It confirms that chemometrics might be considered a fundamental tool to be used in the development of various kinds of sensors and biosensors.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"17 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemometrics-Assisted Enhancement of Electrochemical Biosensor Performance toward miRNA Detection\",\"authors\":\"Wanda Cimmino, Simona Esposito, Panagiota M. Kalligosfyri, Nunzia Iaccarino, Stefano Cinti\",\"doi\":\"10.1021/acs.analchem.4c05402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chemometrics represents a potent tool for optimizing the experimental setup and subsequently boosting the performance of analytical methods. In particular, design of experiments (DoE) allows the experimental conditions to be optimized with high accuracy and a lower number of experiments when compared with the classical univariate approach, also known as one variable at a time (OVAT), which provides only a partial understanding on how factors affect the response. In this work, DoE was exploited, specifically a D-optimal design was used, to improve the analytical performance of a hybridization-based paper-based electrochemical biosensor, taking as target of the study the miRNA-29c (miR-29c) that is related to triple negative breast cancer. The sensing platform is composed of six variables to be optimized, including both those related to the sensor’s manufacture (i.e., gold nanoparticles, immobilized DNA probe) and those related to the working conditions (i.e., ionic strength, probe-target hybridization, electrochemical parameters). The adoption of DoE allowed us to optimize the device using only 30 experiments with respect to the 486 that would have been required with the OVAT approach, and as a consequence of the more accurate optimal conditions that have been reached, the detection of miRNA was more sensitive and repeatable when compared with previous data reported using the univariate approach for optimization, leading to a 5-fold limit of detection (LOD) improvement toward miRNA. It confirms that chemometrics might be considered a fundamental tool to be used in the development of various kinds of sensors and biosensors.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c05402\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05402","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

化学计量学是优化实验设置和提高分析方法性能的有效工具。特别是,与经典的单变量方法(也称为一次一个变量(OVAT))相比,实验设计(DoE)可以高精度地优化实验条件,并减少实验次数。在这项工作中,利用 DoE,特别是 D-optimal 设计,改进了基于杂交的纸质电化学生物传感器的分析性能,将与三阴性乳腺癌相关的 miRNA-29c (miR-29c)作为研究目标。传感平台由六个有待优化的变量组成,包括与传感器制造有关的变量(即金纳米粒子、固定 DNA 探针)和与工作条件有关的变量(即离子强度、探针与目标杂交、电化学参数)。采用 DoE 方法后,我们仅用了 30 次实验就优化了装置,而采用 OVAT 方法则需要 486 次实验。由于达到了更精确的最佳条件,与之前使用单变量方法进行优化的数据相比,miRNA 的检测灵敏度更高,重复性更好,miRNA 的检测限(LOD)提高了 5 倍。这证明化学计量学可被视为开发各种传感器和生物传感器的基本工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chemometrics-Assisted Enhancement of Electrochemical Biosensor Performance toward miRNA Detection

Chemometrics-Assisted Enhancement of Electrochemical Biosensor Performance toward miRNA Detection
Chemometrics represents a potent tool for optimizing the experimental setup and subsequently boosting the performance of analytical methods. In particular, design of experiments (DoE) allows the experimental conditions to be optimized with high accuracy and a lower number of experiments when compared with the classical univariate approach, also known as one variable at a time (OVAT), which provides only a partial understanding on how factors affect the response. In this work, DoE was exploited, specifically a D-optimal design was used, to improve the analytical performance of a hybridization-based paper-based electrochemical biosensor, taking as target of the study the miRNA-29c (miR-29c) that is related to triple negative breast cancer. The sensing platform is composed of six variables to be optimized, including both those related to the sensor’s manufacture (i.e., gold nanoparticles, immobilized DNA probe) and those related to the working conditions (i.e., ionic strength, probe-target hybridization, electrochemical parameters). The adoption of DoE allowed us to optimize the device using only 30 experiments with respect to the 486 that would have been required with the OVAT approach, and as a consequence of the more accurate optimal conditions that have been reached, the detection of miRNA was more sensitive and repeatable when compared with previous data reported using the univariate approach for optimization, leading to a 5-fold limit of detection (LOD) improvement toward miRNA. It confirms that chemometrics might be considered a fundamental tool to be used in the development of various kinds of sensors and biosensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信