Gang Xue , Gang Wang , Qianqian Shi , Hui Wang , Bo-Min Lv , Min Gao , Xiaohui Niu , Hong-Yu Zhang
{"title":"通过病例对照和纵向血液转录组分析探索帕金森病的动态发病机制","authors":"Gang Xue , Gang Wang , Qianqian Shi , Hui Wang , Bo-Min Lv , Min Gao , Xiaohui Niu , Hong-Yu Zhang","doi":"10.1016/j.nbd.2025.106891","DOIUrl":null,"url":null,"abstract":"<div><div>The pathogenesis of Parkinson's disease (PD) was recently hypothesized to change along with the disease course. Given the fact that transcriptional changes in blood can provide insightful clues for PD pathogenesis, we performed case-control and longitudinal whole blood transcriptome analyses to identify the signature genes underlying the hypothesized dynamic pathogenesis of PD. In the case-control study, we compared the gene expression patterns in healthy control (<em>N</em> = 189), prodromal (<em>N</em> = 58) and de novo idiopathic PD subjects (<em>N</em> = 390). The results showed that the prodromal subjects were at the tipping-point stage, which is characterized by the abnormal expression patterns of 414 genes associated with oxygen transport and reactive oxygen species metabolic process. We next performed a longitudinal transcriptome analysis on 255 PD patients from the baseline to the third year, and identified 203 genes related to immune and inflammatory responses during disease progression. These findings not just offer deeper insights into the dynamic pathogenesis of PD, but also help to find potential drugs to prevent the early neurodegeneration process.</div></div>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":"209 ","pages":"Article 106891"},"PeriodicalIF":5.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the dynamic pathogenesis of Parkinson's disease by case-control and longitudinal blood transcriptome analyses\",\"authors\":\"Gang Xue , Gang Wang , Qianqian Shi , Hui Wang , Bo-Min Lv , Min Gao , Xiaohui Niu , Hong-Yu Zhang\",\"doi\":\"10.1016/j.nbd.2025.106891\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pathogenesis of Parkinson's disease (PD) was recently hypothesized to change along with the disease course. Given the fact that transcriptional changes in blood can provide insightful clues for PD pathogenesis, we performed case-control and longitudinal whole blood transcriptome analyses to identify the signature genes underlying the hypothesized dynamic pathogenesis of PD. In the case-control study, we compared the gene expression patterns in healthy control (<em>N</em> = 189), prodromal (<em>N</em> = 58) and de novo idiopathic PD subjects (<em>N</em> = 390). The results showed that the prodromal subjects were at the tipping-point stage, which is characterized by the abnormal expression patterns of 414 genes associated with oxygen transport and reactive oxygen species metabolic process. We next performed a longitudinal transcriptome analysis on 255 PD patients from the baseline to the third year, and identified 203 genes related to immune and inflammatory responses during disease progression. These findings not just offer deeper insights into the dynamic pathogenesis of PD, but also help to find potential drugs to prevent the early neurodegeneration process.</div></div>\",\"PeriodicalId\":19097,\"journal\":{\"name\":\"Neurobiology of Disease\",\"volume\":\"209 \",\"pages\":\"Article 106891\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S096999612500107X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096999612500107X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Exploring the dynamic pathogenesis of Parkinson's disease by case-control and longitudinal blood transcriptome analyses
The pathogenesis of Parkinson's disease (PD) was recently hypothesized to change along with the disease course. Given the fact that transcriptional changes in blood can provide insightful clues for PD pathogenesis, we performed case-control and longitudinal whole blood transcriptome analyses to identify the signature genes underlying the hypothesized dynamic pathogenesis of PD. In the case-control study, we compared the gene expression patterns in healthy control (N = 189), prodromal (N = 58) and de novo idiopathic PD subjects (N = 390). The results showed that the prodromal subjects were at the tipping-point stage, which is characterized by the abnormal expression patterns of 414 genes associated with oxygen transport and reactive oxygen species metabolic process. We next performed a longitudinal transcriptome analysis on 255 PD patients from the baseline to the third year, and identified 203 genes related to immune and inflammatory responses during disease progression. These findings not just offer deeper insights into the dynamic pathogenesis of PD, but also help to find potential drugs to prevent the early neurodegeneration process.
期刊介绍:
Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.