Lejla Paracka , Marcus Heldmann , Florian Lange , Assel Saryyeva , Martin Klietz , Thomas F. Münte , Bruno Kopp , Florian Wegner , Joachim K. Krauss
{"title":"Subthalamic nucleus dynamics during executive functioning: Insights from local field potentials in Parkinson’s disease","authors":"Lejla Paracka , Marcus Heldmann , Florian Lange , Assel Saryyeva , Martin Klietz , Thomas F. Münte , Bruno Kopp , Florian Wegner , Joachim K. Krauss","doi":"10.1016/j.neuroscience.2025.04.006","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the involvement of the subthalamic nucleus (STN) in executive functions, particularly cognitive flexibility, in Parkinson’s disease (PD) patients. Utilizing a computerized Wisconsin Card Sorting Task (WCST) and local field potential (LFP) recordings from implanted deep brain stimulation (DBS) electrodes, we investigated task-specific neural dynamics. Behavioural results demonstrated increased error rates and prolonged response times in trials requiring set-shifting and rule induction via cross-temporal information integration. Electrophysiological analyses revealed integration-specific LFP modulations, including enhanced theta-band activity linked to conflict monitoring and cognitive control during high-demand trials, and beta-band suppression associated with motor inhibition and task disengagement. These findings underscore the STN’s integrative role in non-motor domains, supporting its function in cross-temporal information integration for cognitive control. The results also highlight the utility of the WCST for assessing multiple executive processes and the potential of LFP-based biomarkers to refine DBS programming. Despite the relatively small sample size, this study provides novel insights into the oscillatory dynamics of the STN, emphasizing its broader role in decision-making and executive control. Future research should expand the understanding of the STN’s contributions across cognitive domains.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"574 ","pages":"Pages 65-73"},"PeriodicalIF":2.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225002830","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Subthalamic nucleus dynamics during executive functioning: Insights from local field potentials in Parkinson’s disease
This study explores the involvement of the subthalamic nucleus (STN) in executive functions, particularly cognitive flexibility, in Parkinson’s disease (PD) patients. Utilizing a computerized Wisconsin Card Sorting Task (WCST) and local field potential (LFP) recordings from implanted deep brain stimulation (DBS) electrodes, we investigated task-specific neural dynamics. Behavioural results demonstrated increased error rates and prolonged response times in trials requiring set-shifting and rule induction via cross-temporal information integration. Electrophysiological analyses revealed integration-specific LFP modulations, including enhanced theta-band activity linked to conflict monitoring and cognitive control during high-demand trials, and beta-band suppression associated with motor inhibition and task disengagement. These findings underscore the STN’s integrative role in non-motor domains, supporting its function in cross-temporal information integration for cognitive control. The results also highlight the utility of the WCST for assessing multiple executive processes and the potential of LFP-based biomarkers to refine DBS programming. Despite the relatively small sample size, this study provides novel insights into the oscillatory dynamics of the STN, emphasizing its broader role in decision-making and executive control. Future research should expand the understanding of the STN’s contributions across cognitive domains.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.