{"title":"妊娠期糖尿病患者乳外泌体促进后代肠道发育的能力较弱","authors":"Jiaqi Mo, Yudi Ding, Junyi Yang, Zhongdaixi Zheng, Jiazhi Lu, Huiyu Luo, Jiexian Wang, Fengjuan Lin, Junbin Chen, Qing Li, Xiangyi Zheng, Longying Zha","doi":"10.1002/mnfr.70026","DOIUrl":null,"url":null,"abstract":"This study aims to investigate whether human milk exosomes from gestational diabetes mellitus (GDM-EXO) and healthy (HEA-EXO) parturients differ in regulating intestinal development in offspring. The differential miRNAs associated with intestinal development in GDM-EXO and HEA-EXO were verified by using qPCR and their relationships with gut microbiota (GM) in infants were analyzed. C57BL/6J mice were gavaged with 50 mg/kg·BW HEA-EXO or GDM-EXO. The intestinal morphology, gut barriers, ZO-1 and Occludin, and GM were determined by histological staining, Western blotting, and 16S rDNA amplicon sequencing, respectively. Hsa-miR-19b-3p, hsa-miR-148a-3p, and hsa-miR-320a-3p were upregulated, and hsa-miR-429 was decreased in GDM-EXO compared to HEA-EXO. The GDM parturients’ infants had increased intestinal <i>Coriobacteriaceae</i>, <i>Clostridiaceae</i>, <i>Erysipelotrichaceae</i>, <i>Erysipelatoclostridiaceae</i>, and fewer <i>Lactobacillaceae</i> than the healthy parturient's infants. The four differential miRNAs in GDM-EXO all correlated with the infants’ GM. GDM-EXO- and HEA-EXO-fed mice had greater villus lengths, villus length-to-crypt depth ratios, goblet cell numbers, elevated ZO-1 and Occludin, and lower crypt depths than control mice. HEA-EXO-fed mice had better intestinal morphology and gut barrier integrity than GDM-EXO-fed mice. GDM-EXO-fed mice had significantly decreased <i>Lachnospiraceae</i> and <i>Oscillospiraceae</i> than HEA-EXO-fed mice. GDM-EXO demonstrate weaker ability to promote intestinal development in offspring than HEA-EXO.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"25 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Milk Exosomes From Gestational Diabetes Mellitus Parturients Demonstrate Weaker Ability to Promote Intestinal Development in Offspring\",\"authors\":\"Jiaqi Mo, Yudi Ding, Junyi Yang, Zhongdaixi Zheng, Jiazhi Lu, Huiyu Luo, Jiexian Wang, Fengjuan Lin, Junbin Chen, Qing Li, Xiangyi Zheng, Longying Zha\",\"doi\":\"10.1002/mnfr.70026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to investigate whether human milk exosomes from gestational diabetes mellitus (GDM-EXO) and healthy (HEA-EXO) parturients differ in regulating intestinal development in offspring. The differential miRNAs associated with intestinal development in GDM-EXO and HEA-EXO were verified by using qPCR and their relationships with gut microbiota (GM) in infants were analyzed. C57BL/6J mice were gavaged with 50 mg/kg·BW HEA-EXO or GDM-EXO. The intestinal morphology, gut barriers, ZO-1 and Occludin, and GM were determined by histological staining, Western blotting, and 16S rDNA amplicon sequencing, respectively. Hsa-miR-19b-3p, hsa-miR-148a-3p, and hsa-miR-320a-3p were upregulated, and hsa-miR-429 was decreased in GDM-EXO compared to HEA-EXO. The GDM parturients’ infants had increased intestinal <i>Coriobacteriaceae</i>, <i>Clostridiaceae</i>, <i>Erysipelotrichaceae</i>, <i>Erysipelatoclostridiaceae</i>, and fewer <i>Lactobacillaceae</i> than the healthy parturient's infants. The four differential miRNAs in GDM-EXO all correlated with the infants’ GM. GDM-EXO- and HEA-EXO-fed mice had greater villus lengths, villus length-to-crypt depth ratios, goblet cell numbers, elevated ZO-1 and Occludin, and lower crypt depths than control mice. HEA-EXO-fed mice had better intestinal morphology and gut barrier integrity than GDM-EXO-fed mice. GDM-EXO-fed mice had significantly decreased <i>Lachnospiraceae</i> and <i>Oscillospiraceae</i> than HEA-EXO-fed mice. GDM-EXO demonstrate weaker ability to promote intestinal development in offspring than HEA-EXO.\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/mnfr.70026\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.70026","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Milk Exosomes From Gestational Diabetes Mellitus Parturients Demonstrate Weaker Ability to Promote Intestinal Development in Offspring
This study aims to investigate whether human milk exosomes from gestational diabetes mellitus (GDM-EXO) and healthy (HEA-EXO) parturients differ in regulating intestinal development in offspring. The differential miRNAs associated with intestinal development in GDM-EXO and HEA-EXO were verified by using qPCR and their relationships with gut microbiota (GM) in infants were analyzed. C57BL/6J mice were gavaged with 50 mg/kg·BW HEA-EXO or GDM-EXO. The intestinal morphology, gut barriers, ZO-1 and Occludin, and GM were determined by histological staining, Western blotting, and 16S rDNA amplicon sequencing, respectively. Hsa-miR-19b-3p, hsa-miR-148a-3p, and hsa-miR-320a-3p were upregulated, and hsa-miR-429 was decreased in GDM-EXO compared to HEA-EXO. The GDM parturients’ infants had increased intestinal Coriobacteriaceae, Clostridiaceae, Erysipelotrichaceae, Erysipelatoclostridiaceae, and fewer Lactobacillaceae than the healthy parturient's infants. The four differential miRNAs in GDM-EXO all correlated with the infants’ GM. GDM-EXO- and HEA-EXO-fed mice had greater villus lengths, villus length-to-crypt depth ratios, goblet cell numbers, elevated ZO-1 and Occludin, and lower crypt depths than control mice. HEA-EXO-fed mice had better intestinal morphology and gut barrier integrity than GDM-EXO-fed mice. GDM-EXO-fed mice had significantly decreased Lachnospiraceae and Oscillospiraceae than HEA-EXO-fed mice. GDM-EXO demonstrate weaker ability to promote intestinal development in offspring than HEA-EXO.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.