{"title":"用于软机器人的超强轻量级电-气执行器","authors":"Zean Yuan;Jiaxing Li;Lifu Liu;Xinyu Zhu;Wenbiao Wang;Michael D. Dickey;Guo Zhan Lum;Pakpong Chirarattananon;Jun Luo;Rui Chen","doi":"10.1109/TRO.2025.3559430","DOIUrl":null,"url":null,"abstract":"Rigid robots can achieve precise motions but expose shortcomings in system complexity, fabrication cost, and human–robot interaction, which motivates researchers to develop various soft robots to fill these gaps. Electro-hydraulic actuators (EHAs) have received widespread attention and been used in many soft robots due to impressive high-strain, fast-speed, and rapid-response characteristics. However, existing EHAs face challenges in achieving large-deformation, high-robustness, and low-weight simultaneously. This limits the application of EHAs in robotic systems that are weight-sensitive or require fail-safe and fault-tolerant behavior. Here, we present a lightweight (0.98 g) electro-pneumatic actuator (EPA) filled with air and only 0.1-mL liquid dielectric, which achieves high-speed bending from 11° to 93.5° in 60 ms, large-angle bending from 11° to 104° in 2 s (the largest in current EHAs), and high-frequency swing at 20 Hz. The EPA is ultrarobust and can operate properly after being punctured by four needles or crushed twice by a 1500-kg vehicle. Furthermore, to validate the above features of EPAs, three applications are demonstrated at a voltage of 6 kV, including four-finger grippers, fast-crawling robots, and water-walking robots. This work pushes the boundaries of robustness and lightweight for EHAs, providing a foundation for the application of electro-pneumatic actuation in soft robotics.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":"41 ","pages":"2894-2910"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrarobust and Lightweight Electro-Pneumatic Actuators for Soft Robotics\",\"authors\":\"Zean Yuan;Jiaxing Li;Lifu Liu;Xinyu Zhu;Wenbiao Wang;Michael D. Dickey;Guo Zhan Lum;Pakpong Chirarattananon;Jun Luo;Rui Chen\",\"doi\":\"10.1109/TRO.2025.3559430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rigid robots can achieve precise motions but expose shortcomings in system complexity, fabrication cost, and human–robot interaction, which motivates researchers to develop various soft robots to fill these gaps. Electro-hydraulic actuators (EHAs) have received widespread attention and been used in many soft robots due to impressive high-strain, fast-speed, and rapid-response characteristics. However, existing EHAs face challenges in achieving large-deformation, high-robustness, and low-weight simultaneously. This limits the application of EHAs in robotic systems that are weight-sensitive or require fail-safe and fault-tolerant behavior. Here, we present a lightweight (0.98 g) electro-pneumatic actuator (EPA) filled with air and only 0.1-mL liquid dielectric, which achieves high-speed bending from 11° to 93.5° in 60 ms, large-angle bending from 11° to 104° in 2 s (the largest in current EHAs), and high-frequency swing at 20 Hz. The EPA is ultrarobust and can operate properly after being punctured by four needles or crushed twice by a 1500-kg vehicle. Furthermore, to validate the above features of EPAs, three applications are demonstrated at a voltage of 6 kV, including four-finger grippers, fast-crawling robots, and water-walking robots. This work pushes the boundaries of robustness and lightweight for EHAs, providing a foundation for the application of electro-pneumatic actuation in soft robotics.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":\"41 \",\"pages\":\"2894-2910\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10960267/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10960267/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
Ultrarobust and Lightweight Electro-Pneumatic Actuators for Soft Robotics
Rigid robots can achieve precise motions but expose shortcomings in system complexity, fabrication cost, and human–robot interaction, which motivates researchers to develop various soft robots to fill these gaps. Electro-hydraulic actuators (EHAs) have received widespread attention and been used in many soft robots due to impressive high-strain, fast-speed, and rapid-response characteristics. However, existing EHAs face challenges in achieving large-deformation, high-robustness, and low-weight simultaneously. This limits the application of EHAs in robotic systems that are weight-sensitive or require fail-safe and fault-tolerant behavior. Here, we present a lightweight (0.98 g) electro-pneumatic actuator (EPA) filled with air and only 0.1-mL liquid dielectric, which achieves high-speed bending from 11° to 93.5° in 60 ms, large-angle bending from 11° to 104° in 2 s (the largest in current EHAs), and high-frequency swing at 20 Hz. The EPA is ultrarobust and can operate properly after being punctured by four needles or crushed twice by a 1500-kg vehicle. Furthermore, to validate the above features of EPAs, three applications are demonstrated at a voltage of 6 kV, including four-finger grippers, fast-crawling robots, and water-walking robots. This work pushes the boundaries of robustness and lightweight for EHAs, providing a foundation for the application of electro-pneumatic actuation in soft robotics.
期刊介绍:
The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles.
Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.