Feiyang Yuan, Lufeng Tian, Haoyuan Xu, Zhongqiang Fu, Wenjie Wu, Zhexin Xie, Bo Yuan, Tianmiao Wang, Xilun Ding, Li Wen
{"title":"一种用于改善复杂环境中附着力的传感机械自导向吸盘。","authors":"Feiyang Yuan, Lufeng Tian, Haoyuan Xu, Zhongqiang Fu, Wenjie Wu, Zhexin Xie, Bo Yuan, Tianmiao Wang, Xilun Ding, Li Wen","doi":"10.1089/soro.2024.0152","DOIUrl":null,"url":null,"abstract":"<p><p>Octopuses can effectively interact with environments using their agile suction cups, in which abundant neuroreceptors are embodied inside. Inspired by this, we proposed an electronics-integrated self-guided adhesive suction cup (E-SGAS) capable of environmental sensing and adaptively adhesion on diverse surfaces. E-SGAS features an inflatable adhesive membrane and an under-actuated design, enabling it to adapt to various angles and surface roughness under low preloads. A theoretical model is presented to predict self-guided adhesion outcomes. The integrated multilayer stretchable liquid metal sensory circuit (with a maximum deformation rate of 186%) in the adhesive membrane allows for detecting expansion, contact, suction, leakage, and surface roughness. E-SGAS can also process the sensory information to guide intelligent gripping in various complex environments. Experimental results demonstrate the ability of E-SGAS to autonomously grip under a preload force of 0.11 N, a maximum adhesion force of 57.9N, and a detachment force of only 0.34 N. It can adhere to surfaces up to 60-grit roughness and accommodate a surface with a relative angle of 90°. We also show that E-SGAS can capture flying objects or work in a confined space. The proposed adhesion and sensing strategies aim to enhance the performance and expand the application range of suction cup-like grippers. E-SGAS's results can provide design insights into creating stretchable electronics-integrated bioinspired adhesive systems that can interact with unconstructed environments.</p>","PeriodicalId":94210,"journal":{"name":"Soft robotics","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Sensorized Mechanically Self-Guided Suction Cup for Improved Adhesion in Complex Environments.\",\"authors\":\"Feiyang Yuan, Lufeng Tian, Haoyuan Xu, Zhongqiang Fu, Wenjie Wu, Zhexin Xie, Bo Yuan, Tianmiao Wang, Xilun Ding, Li Wen\",\"doi\":\"10.1089/soro.2024.0152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Octopuses can effectively interact with environments using their agile suction cups, in which abundant neuroreceptors are embodied inside. Inspired by this, we proposed an electronics-integrated self-guided adhesive suction cup (E-SGAS) capable of environmental sensing and adaptively adhesion on diverse surfaces. E-SGAS features an inflatable adhesive membrane and an under-actuated design, enabling it to adapt to various angles and surface roughness under low preloads. A theoretical model is presented to predict self-guided adhesion outcomes. The integrated multilayer stretchable liquid metal sensory circuit (with a maximum deformation rate of 186%) in the adhesive membrane allows for detecting expansion, contact, suction, leakage, and surface roughness. E-SGAS can also process the sensory information to guide intelligent gripping in various complex environments. Experimental results demonstrate the ability of E-SGAS to autonomously grip under a preload force of 0.11 N, a maximum adhesion force of 57.9N, and a detachment force of only 0.34 N. It can adhere to surfaces up to 60-grit roughness and accommodate a surface with a relative angle of 90°. We also show that E-SGAS can capture flying objects or work in a confined space. The proposed adhesion and sensing strategies aim to enhance the performance and expand the application range of suction cup-like grippers. E-SGAS's results can provide design insights into creating stretchable electronics-integrated bioinspired adhesive systems that can interact with unconstructed environments.</p>\",\"PeriodicalId\":94210,\"journal\":{\"name\":\"Soft robotics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soft robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/soro.2024.0152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/soro.2024.0152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Sensorized Mechanically Self-Guided Suction Cup for Improved Adhesion in Complex Environments.
Octopuses can effectively interact with environments using their agile suction cups, in which abundant neuroreceptors are embodied inside. Inspired by this, we proposed an electronics-integrated self-guided adhesive suction cup (E-SGAS) capable of environmental sensing and adaptively adhesion on diverse surfaces. E-SGAS features an inflatable adhesive membrane and an under-actuated design, enabling it to adapt to various angles and surface roughness under low preloads. A theoretical model is presented to predict self-guided adhesion outcomes. The integrated multilayer stretchable liquid metal sensory circuit (with a maximum deformation rate of 186%) in the adhesive membrane allows for detecting expansion, contact, suction, leakage, and surface roughness. E-SGAS can also process the sensory information to guide intelligent gripping in various complex environments. Experimental results demonstrate the ability of E-SGAS to autonomously grip under a preload force of 0.11 N, a maximum adhesion force of 57.9N, and a detachment force of only 0.34 N. It can adhere to surfaces up to 60-grit roughness and accommodate a surface with a relative angle of 90°. We also show that E-SGAS can capture flying objects or work in a confined space. The proposed adhesion and sensing strategies aim to enhance the performance and expand the application range of suction cup-like grippers. E-SGAS's results can provide design insights into creating stretchable electronics-integrated bioinspired adhesive systems that can interact with unconstructed environments.