关于加权Frobenius范数Böttcher-Wenzel不等式的若干猜想

IF 1 3区 数学 Q1 MATHEMATICS
Wenbo Fang, Che-Man Cheng
{"title":"关于加权Frobenius范数Böttcher-Wenzel不等式的若干猜想","authors":"Wenbo Fang,&nbsp;Che-Man Cheng","doi":"10.1016/j.laa.2025.03.015","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>ω</em> be a positive definite matrix. The <em>ω</em>-weighted Frobenius norm <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>ω</mi></mrow></msub></math></span> is defined by <span><math><msub><mrow><mo>‖</mo><mi>X</mi><mo>‖</mo></mrow><mrow><mi>ω</mi></mrow></msub><mo>=</mo><msqrt><mrow><mrow><mi>tr</mi></mrow><mspace></mspace><mi>ω</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi></mrow></msqrt></math></span>. Recently, A. Mayumi, G. Kimura, H. Ohno, and D. Chruściński raised some conjectures concerning the generalized Böttcher-Wenzel inequality:<span><span><span><math><msub><mrow><mo>‖</mo><mi>X</mi><mi>Y</mi><mo>−</mo><mi>Y</mi><mi>X</mi><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mi>C</mi><msub><mrow><mo>‖</mo><mi>X</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>Y</mi><mo>‖</mo></mrow><mrow><mn>3</mn></mrow></msub><mspace></mspace><mspace></mspace><mtext> for all </mtext><mi>n</mi><mo>×</mo><mi>n</mi><mtext> complex matrices </mtext><mi>X</mi><mtext> and </mtext><mi>Y</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>) is the Frobenius norm or <em>ω</em>-weighted Frobenius norm. In this paper, the conjectures are proved when <em>X</em> and <em>Y</em> are rank one matrices.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"718 ","pages":"Pages 1-13"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On some conjectures concerning the Böttcher-Wenzel inequality for weighted Frobenius norms\",\"authors\":\"Wenbo Fang,&nbsp;Che-Man Cheng\",\"doi\":\"10.1016/j.laa.2025.03.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>ω</em> be a positive definite matrix. The <em>ω</em>-weighted Frobenius norm <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>ω</mi></mrow></msub></math></span> is defined by <span><math><msub><mrow><mo>‖</mo><mi>X</mi><mo>‖</mo></mrow><mrow><mi>ω</mi></mrow></msub><mo>=</mo><msqrt><mrow><mrow><mi>tr</mi></mrow><mspace></mspace><mi>ω</mi><msup><mrow><mi>X</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mi>X</mi></mrow></msqrt></math></span>. Recently, A. Mayumi, G. Kimura, H. Ohno, and D. Chruściński raised some conjectures concerning the generalized Böttcher-Wenzel inequality:<span><span><span><math><msub><mrow><mo>‖</mo><mi>X</mi><mi>Y</mi><mo>−</mo><mi>Y</mi><mi>X</mi><mo>‖</mo></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mi>C</mi><msub><mrow><mo>‖</mo><mi>X</mi><mo>‖</mo></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mo>‖</mo><mi>Y</mi><mo>‖</mo></mrow><mrow><mn>3</mn></mrow></msub><mspace></mspace><mspace></mspace><mtext> for all </mtext><mi>n</mi><mo>×</mo><mi>n</mi><mtext> complex matrices </mtext><mi>X</mi><mtext> and </mtext><mi>Y</mi><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mo>‖</mo><mo>⋅</mo><mo>‖</mo></mrow><mrow><mi>i</mi></mrow></msub></math></span> (<span><math><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></math></span>) is the Frobenius norm or <em>ω</em>-weighted Frobenius norm. In this paper, the conjectures are proved when <em>X</em> and <em>Y</em> are rank one matrices.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"718 \",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001168\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001168","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设ω是一个正定矩阵。ω加权Frobenius范数‖⋅‖ω定义为‖X‖ω= ωX X。最近,A. Mayumi, G. Kimura, H. Ohno和D. Chruściński对所有n×n复矩阵X和Y的广义Böttcher-Wenzel不等式提出了一些猜想:‖XY−YX‖1≤C‖X‖2‖Y‖3,其中‖⋅‖i (i=1,2,3)是Frobenius范数或ω-加权Frobenius范数。本文证明了X和Y是秩一矩阵时的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On some conjectures concerning the Böttcher-Wenzel inequality for weighted Frobenius norms
Let ω be a positive definite matrix. The ω-weighted Frobenius norm ω is defined by Xω=trωXX. Recently, A. Mayumi, G. Kimura, H. Ohno, and D. Chruściński raised some conjectures concerning the generalized Böttcher-Wenzel inequality:XYYX1CX2Y3 for all n×n complex matrices X and Y, where i (i=1,2,3) is the Frobenius norm or ω-weighted Frobenius norm. In this paper, the conjectures are proved when X and Y are rank one matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信