有向图的无符号拉普拉斯特征多项式系数的组合解释

IF 1 3区 数学 Q1 MATHEMATICS
Jingyuan Zhang , Xian'an Jin , Weigen Yan
{"title":"有向图的无符号拉普拉斯特征多项式系数的组合解释","authors":"Jingyuan Zhang ,&nbsp;Xian'an Jin ,&nbsp;Weigen Yan","doi":"10.1016/j.laa.2025.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple digraph with <em>n</em> vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote the adjacency matrix and the in-degree matrix of <em>G</em> by <span><math><mi>A</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span> and <span><math><mi>D</mi><mo>=</mo><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mo>(</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><mo>⋯</mo><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span>, respectively, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span> is an arc of <em>G</em> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> otherwise, and <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> is the number of arcs with head <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <em>G</em>. Set <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><mi>x</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>D</mi><mo>−</mo><mi>A</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msup></math></span>, where <span><math><mi>det</mi><mo>⁡</mo><mo>(</mo><mi>X</mi><mo>)</mo></math></span> denotes the determinant of a square matrix <em>X</em>. Then <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> is called the signless Laplacian characteristic polynomial of the digraph <em>G</em>. Li, Lu, Wang and Wang (2023) <span><span>[7]</span></span> gave a combinatorial explanation of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>. In this paper, we give combinatorial explanations of all the coefficients of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> and we also generalize this result to weighted digraphs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"717 ","pages":"Pages 56-67"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial explanation of coefficients of the signless Laplacian characteristic polynomial of a digraph\",\"authors\":\"Jingyuan Zhang ,&nbsp;Xian'an Jin ,&nbsp;Weigen Yan\",\"doi\":\"10.1016/j.laa.2025.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a simple digraph with <em>n</em> vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote the adjacency matrix and the in-degree matrix of <em>G</em> by <span><math><mi>A</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span> and <span><math><mi>D</mi><mo>=</mo><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mo>(</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><mo>⋯</mo><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span>, respectively, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span> is an arc of <em>G</em> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> otherwise, and <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> is the number of arcs with head <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <em>G</em>. Set <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>det</mi><mo>⁡</mo><mo>(</mo><mi>x</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>D</mi><mo>−</mo><mi>A</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msup></math></span>, where <span><math><mi>det</mi><mo>⁡</mo><mo>(</mo><mi>X</mi><mo>)</mo></math></span> denotes the determinant of a square matrix <em>X</em>. Then <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> is called the signless Laplacian characteristic polynomial of the digraph <em>G</em>. Li, Lu, Wang and Wang (2023) <span><span>[7]</span></span> gave a combinatorial explanation of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>. In this paper, we give combinatorial explanations of all the coefficients of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> and we also generalize this result to weighted digraphs.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"717 \",\"pages\":\"Pages 56-67\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001119\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个简单的有向图,有n个顶点v1 v2…vn。表示的邻接矩阵和入度矩阵G = (aij) n×n和D =诊断接头(d1, d2 +⋯,dn +),分别aij = 1如果(vi, vj)是一个G和弧aij = 0否则,di +是弧的数目和第六头在G组f (G; x) =侦破⁡(D鑫−−)=∑i = 0 n(−1)icixn−我,在侦破⁡(x)表示一个方阵的行列式x那么f (G; x)被称为无表示的拉普拉斯算子的特征多项式的有向图G .李陆、王、王(2023)[7]组合的解释了cn−1 f (G; x)。本文给出了f(G;x)的所有系数的组合解释,并将此结果推广到加权有向图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combinatorial explanation of coefficients of the signless Laplacian characteristic polynomial of a digraph
Let G be a simple digraph with n vertices v1,v2,,vn. Denote the adjacency matrix and the in-degree matrix of G by A=(aij)n×n and D=diag(d1+,d2+,,dn+), respectively, where aij=1 if (vi,vj) is an arc of G and aij=0 otherwise, and di+ is the number of arcs with head vi in G. Set f(G;x)=det(xInDA)=i=0n(1)icixni, where det(X) denotes the determinant of a square matrix X. Then f(G;x) is called the signless Laplacian characteristic polynomial of the digraph G. Li, Lu, Wang and Wang (2023) [7] gave a combinatorial explanation of cn1 of f(G;x). In this paper, we give combinatorial explanations of all the coefficients of f(G;x) and we also generalize this result to weighted digraphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
9.10%
发文量
333
审稿时长
13.8 months
期刊介绍: Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信