{"title":"有向图的无符号拉普拉斯特征多项式系数的组合解释","authors":"Jingyuan Zhang , Xian'an Jin , Weigen Yan","doi":"10.1016/j.laa.2025.03.010","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>G</em> be a simple digraph with <em>n</em> vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote the adjacency matrix and the in-degree matrix of <em>G</em> by <span><math><mi>A</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span> and <span><math><mi>D</mi><mo>=</mo><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mo>(</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><mo>⋯</mo><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span>, respectively, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span> is an arc of <em>G</em> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> otherwise, and <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> is the number of arcs with head <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <em>G</em>. Set <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>det</mi><mo></mo><mo>(</mo><mi>x</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>D</mi><mo>−</mo><mi>A</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msup></math></span>, where <span><math><mi>det</mi><mo></mo><mo>(</mo><mi>X</mi><mo>)</mo></math></span> denotes the determinant of a square matrix <em>X</em>. Then <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> is called the signless Laplacian characteristic polynomial of the digraph <em>G</em>. Li, Lu, Wang and Wang (2023) <span><span>[7]</span></span> gave a combinatorial explanation of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>. In this paper, we give combinatorial explanations of all the coefficients of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> and we also generalize this result to weighted digraphs.</div></div>","PeriodicalId":18043,"journal":{"name":"Linear Algebra and its Applications","volume":"717 ","pages":"Pages 56-67"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial explanation of coefficients of the signless Laplacian characteristic polynomial of a digraph\",\"authors\":\"Jingyuan Zhang , Xian'an Jin , Weigen Yan\",\"doi\":\"10.1016/j.laa.2025.03.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <em>G</em> be a simple digraph with <em>n</em> vertices <span><math><msub><mrow><mi>v</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. Denote the adjacency matrix and the in-degree matrix of <em>G</em> by <span><math><mi>A</mi><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>×</mo><mi>n</mi></mrow></msub></math></span> and <span><math><mi>D</mi><mo>=</mo><mi>d</mi><mi>i</mi><mi>a</mi><mi>g</mi><mo>(</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>+</mo></mrow></msubsup><mo>,</mo><mo>⋯</mo><mo>,</mo><msubsup><mrow><mi>d</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>)</mo></math></span>, respectively, where <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>1</mn></math></span> if <span><math><mo>(</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>v</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></math></span> is an arc of <em>G</em> and <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi><mi>j</mi></mrow></msub><mo>=</mo><mn>0</mn></math></span> otherwise, and <span><math><msubsup><mrow><mi>d</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>+</mo></mrow></msubsup></math></span> is the number of arcs with head <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> in <em>G</em>. Set <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo><mo>=</mo><mi>det</mi><mo></mo><mo>(</mo><mi>x</mi><msub><mrow><mi>I</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>D</mi><mo>−</mo><mi>A</mi><mo>)</mo><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></munderover><msup><mrow><mo>(</mo><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><mi>i</mi></mrow></msup><msub><mrow><mi>c</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi><mo>−</mo><mi>i</mi></mrow></msup></math></span>, where <span><math><mi>det</mi><mo></mo><mo>(</mo><mi>X</mi><mo>)</mo></math></span> denotes the determinant of a square matrix <em>X</em>. Then <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> is called the signless Laplacian characteristic polynomial of the digraph <em>G</em>. Li, Lu, Wang and Wang (2023) <span><span>[7]</span></span> gave a combinatorial explanation of <span><math><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span> of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span>. In this paper, we give combinatorial explanations of all the coefficients of <span><math><mi>f</mi><mo>(</mo><mi>G</mi><mo>;</mo><mi>x</mi><mo>)</mo></math></span> and we also generalize this result to weighted digraphs.</div></div>\",\"PeriodicalId\":18043,\"journal\":{\"name\":\"Linear Algebra and its Applications\",\"volume\":\"717 \",\"pages\":\"Pages 56-67\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Linear Algebra and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0024379525001119\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Linear Algebra and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024379525001119","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Combinatorial explanation of coefficients of the signless Laplacian characteristic polynomial of a digraph
Let G be a simple digraph with n vertices . Denote the adjacency matrix and the in-degree matrix of G by and , respectively, where if is an arc of G and otherwise, and is the number of arcs with head in G. Set , where denotes the determinant of a square matrix X. Then is called the signless Laplacian characteristic polynomial of the digraph G. Li, Lu, Wang and Wang (2023) [7] gave a combinatorial explanation of of . In this paper, we give combinatorial explanations of all the coefficients of and we also generalize this result to weighted digraphs.
期刊介绍:
Linear Algebra and its Applications publishes articles that contribute new information or new insights to matrix theory and finite dimensional linear algebra in their algebraic, arithmetic, combinatorial, geometric, or numerical aspects. It also publishes articles that give significant applications of matrix theory or linear algebra to other branches of mathematics and to other sciences. Articles that provide new information or perspectives on the historical development of matrix theory and linear algebra are also welcome. Expository articles which can serve as an introduction to a subject for workers in related areas and which bring one to the frontiers of research are encouraged. Reviews of books are published occasionally as are conference reports that provide an historical record of major meetings on matrix theory and linear algebra.