经皮神经电刺激会改变运动神经元的输入-输出功能,改变力觉。

IF 2.1 3区 医学 Q3 NEUROSCIENCES
Nish Mohith Kurukuti, Simon Avrillon, Jose L Pons
{"title":"经皮神经电刺激会改变运动神经元的输入-输出功能,改变力觉。","authors":"Nish Mohith Kurukuti, Simon Avrillon, Jose L Pons","doi":"10.1152/jn.00140.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Transcutaneous electrical nerve stimulation (TENS) is commonly used in research and clinical settings for pain management and augmenting somatosensory inputs for motor recovery. Besides its functional effect, TENS acutely alters kinesthesia and force steadiness. However, the short-term impact following a session of TENS on proprioception and motor unit behavior is unknown. We evaluated the effect of a session of TENS on the senses of force, joint position, touch, and discharge activity of motor units. Fifteen healthy participants underwent two experiments, each with two visits randomly administering TENS or sham-TENS. The sense of force (Exp. 1) and position (Exp. 2) were evaluated through matching trials by pinching a dial and rotating their wrist (ulnar deviation). Isometric pinch contractions were performed before and after the session of TENS or sham-TENS, in which electromyographic signals were recorded from the first dorsal interosseus (FDI) and abductor pollicis brevis (APB). Results showed that TENS acutely altered the senses of force, position, and touch, but only the sense of force remained altered following TENS. Motor unit discharge rates increased in both FDI and APB muscles for the same force output following TENS. A positive correlation was also observed between changes in motor unit discharge rates and changes in errors in force perception. These findings suggest that a session of TENS may have short-term effects on the input/output function of motoneurons (5 - 10 min in this study), which in turn may alter the sense of force. However, the precise timeline for these short-term aftereffects is unknown.</p>","PeriodicalId":16563,"journal":{"name":"Journal of neurophysiology","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A session of transcutaneous electrical nerve stimulation changes the input-output function of motoneurons and alters the sense of force.\",\"authors\":\"Nish Mohith Kurukuti, Simon Avrillon, Jose L Pons\",\"doi\":\"10.1152/jn.00140.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transcutaneous electrical nerve stimulation (TENS) is commonly used in research and clinical settings for pain management and augmenting somatosensory inputs for motor recovery. Besides its functional effect, TENS acutely alters kinesthesia and force steadiness. However, the short-term impact following a session of TENS on proprioception and motor unit behavior is unknown. We evaluated the effect of a session of TENS on the senses of force, joint position, touch, and discharge activity of motor units. Fifteen healthy participants underwent two experiments, each with two visits randomly administering TENS or sham-TENS. The sense of force (Exp. 1) and position (Exp. 2) were evaluated through matching trials by pinching a dial and rotating their wrist (ulnar deviation). Isometric pinch contractions were performed before and after the session of TENS or sham-TENS, in which electromyographic signals were recorded from the first dorsal interosseus (FDI) and abductor pollicis brevis (APB). Results showed that TENS acutely altered the senses of force, position, and touch, but only the sense of force remained altered following TENS. Motor unit discharge rates increased in both FDI and APB muscles for the same force output following TENS. A positive correlation was also observed between changes in motor unit discharge rates and changes in errors in force perception. These findings suggest that a session of TENS may have short-term effects on the input/output function of motoneurons (5 - 10 min in this study), which in turn may alter the sense of force. However, the precise timeline for these short-term aftereffects is unknown.</p>\",\"PeriodicalId\":16563,\"journal\":{\"name\":\"Journal of neurophysiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurophysiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/jn.00140.2024\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurophysiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/jn.00140.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

经皮神经电刺激(TENS)通常用于研究和临床设置的疼痛管理和增加体感输入的运动恢复。除了功能作用外,TENS还能显著改变运动感和力稳定性。然而,短期内对本体感觉和运动单元行为的影响尚不清楚。我们评估了一次TENS对运动单元的力感、关节位置、触觉和放电活动的影响。15名健康参与者接受了两个实验,每个实验有两次访问随机进行TENS或假TENS。通过捏表盘和旋转腕部(尺侧偏差)的匹配试验来评估力感(Exp. 1)和位置(Exp. 2)。在进行TENS或假TENS前后进行等距捏缩,记录第一背骨间肌(FDI)和短拇外展肌(APB)的肌电图信号。结果表明,TENS对力感、位置感和触觉有明显的改变,但仅对力感有改变。对于相同的力输出,TENS后FDI和APB肌肉的运动单元放电率均增加。运动单元放电率的变化与力感知误差的变化之间也存在正相关。这些发现表明,一段时间的TENS可能会对运动神经元的输入/输出功能产生短期影响(本研究中为5 - 10分钟),进而可能改变力量感。然而,这些短期后遗症的确切时间尚不清楚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A session of transcutaneous electrical nerve stimulation changes the input-output function of motoneurons and alters the sense of force.

Transcutaneous electrical nerve stimulation (TENS) is commonly used in research and clinical settings for pain management and augmenting somatosensory inputs for motor recovery. Besides its functional effect, TENS acutely alters kinesthesia and force steadiness. However, the short-term impact following a session of TENS on proprioception and motor unit behavior is unknown. We evaluated the effect of a session of TENS on the senses of force, joint position, touch, and discharge activity of motor units. Fifteen healthy participants underwent two experiments, each with two visits randomly administering TENS or sham-TENS. The sense of force (Exp. 1) and position (Exp. 2) were evaluated through matching trials by pinching a dial and rotating their wrist (ulnar deviation). Isometric pinch contractions were performed before and after the session of TENS or sham-TENS, in which electromyographic signals were recorded from the first dorsal interosseus (FDI) and abductor pollicis brevis (APB). Results showed that TENS acutely altered the senses of force, position, and touch, but only the sense of force remained altered following TENS. Motor unit discharge rates increased in both FDI and APB muscles for the same force output following TENS. A positive correlation was also observed between changes in motor unit discharge rates and changes in errors in force perception. These findings suggest that a session of TENS may have short-term effects on the input/output function of motoneurons (5 - 10 min in this study), which in turn may alter the sense of force. However, the precise timeline for these short-term aftereffects is unknown.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurophysiology
Journal of neurophysiology 医学-神经科学
CiteScore
4.80
自引率
8.00%
发文量
255
审稿时长
2-3 weeks
期刊介绍: The Journal of Neurophysiology publishes original articles on the function of the nervous system. All levels of function are included, from the membrane and cell to systems and behavior. Experimental approaches include molecular neurobiology, cell culture and slice preparations, membrane physiology, developmental neurobiology, functional neuroanatomy, neurochemistry, neuropharmacology, systems electrophysiology, imaging and mapping techniques, and behavioral analysis. Experimental preparations may be invertebrate or vertebrate species, including humans. Theoretical studies are acceptable if they are tied closely to the interpretation of experimental data and elucidate principles of broad interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信