Ashkan Nejad, Burcu Küçükoǧlu, Jaap de Ruyter van Steveninck, Sandra Bedrossian, Joost Heutink, Gera A de Haan, Frans W Cornelissen, Marcel van Gerven
{"title":"点- spv:利用合成视点对模拟假体视觉中物体识别的端到端增强。","authors":"Ashkan Nejad, Burcu Küçükoǧlu, Jaap de Ruyter van Steveninck, Sandra Bedrossian, Joost Heutink, Gera A de Haan, Frans W Cornelissen, Marcel van Gerven","doi":"10.3389/fnhum.2025.1549698","DOIUrl":null,"url":null,"abstract":"<p><p>Prosthetic vision systems aim to restore functional sight for visually impaired individuals by replicating visual perception by inducing phosphenes through electrical stimulation in the visual cortex, yet there remain challenges in visual representation strategies such as including gaze information and task-dependent optimization. In this paper, we introduce Point-SPV, an end-to-end deep learning model designed to enhance object recognition in simulated prosthetic vision. Point-SPV takes an initial step toward gaze-based optimization by simulating viewing points, representing potential gaze locations, and training the model on patches surrounding these points. Our approach prioritizes task-oriented representation, aligning visual outputs with object recognition needs. A behavioral gaze-contingent object discrimination experiment demonstrated that Point-SPV outperformed a conventional edge detection method, by facilitating observers to gain a higher recognition accuracy, faster reaction times, and a more efficient visual exploration. Our work highlights how task-specific optimization may enhance representations in prosthetic vision, offering a foundation for future exploration and application.</p>","PeriodicalId":12536,"journal":{"name":"Frontiers in Human Neuroscience","volume":"19 ","pages":"1549698"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Point-SPV: end-to-end enhancement of object recognition in simulated prosthetic vision using synthetic viewing points.\",\"authors\":\"Ashkan Nejad, Burcu Küçükoǧlu, Jaap de Ruyter van Steveninck, Sandra Bedrossian, Joost Heutink, Gera A de Haan, Frans W Cornelissen, Marcel van Gerven\",\"doi\":\"10.3389/fnhum.2025.1549698\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prosthetic vision systems aim to restore functional sight for visually impaired individuals by replicating visual perception by inducing phosphenes through electrical stimulation in the visual cortex, yet there remain challenges in visual representation strategies such as including gaze information and task-dependent optimization. In this paper, we introduce Point-SPV, an end-to-end deep learning model designed to enhance object recognition in simulated prosthetic vision. Point-SPV takes an initial step toward gaze-based optimization by simulating viewing points, representing potential gaze locations, and training the model on patches surrounding these points. Our approach prioritizes task-oriented representation, aligning visual outputs with object recognition needs. A behavioral gaze-contingent object discrimination experiment demonstrated that Point-SPV outperformed a conventional edge detection method, by facilitating observers to gain a higher recognition accuracy, faster reaction times, and a more efficient visual exploration. Our work highlights how task-specific optimization may enhance representations in prosthetic vision, offering a foundation for future exploration and application.</p>\",\"PeriodicalId\":12536,\"journal\":{\"name\":\"Frontiers in Human Neuroscience\",\"volume\":\"19 \",\"pages\":\"1549698\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11973266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Human Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnhum.2025.1549698\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Human Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnhum.2025.1549698","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Point-SPV: end-to-end enhancement of object recognition in simulated prosthetic vision using synthetic viewing points.
Prosthetic vision systems aim to restore functional sight for visually impaired individuals by replicating visual perception by inducing phosphenes through electrical stimulation in the visual cortex, yet there remain challenges in visual representation strategies such as including gaze information and task-dependent optimization. In this paper, we introduce Point-SPV, an end-to-end deep learning model designed to enhance object recognition in simulated prosthetic vision. Point-SPV takes an initial step toward gaze-based optimization by simulating viewing points, representing potential gaze locations, and training the model on patches surrounding these points. Our approach prioritizes task-oriented representation, aligning visual outputs with object recognition needs. A behavioral gaze-contingent object discrimination experiment demonstrated that Point-SPV outperformed a conventional edge detection method, by facilitating observers to gain a higher recognition accuracy, faster reaction times, and a more efficient visual exploration. Our work highlights how task-specific optimization may enhance representations in prosthetic vision, offering a foundation for future exploration and application.
期刊介绍:
Frontiers in Human Neuroscience is a first-tier electronic journal devoted to understanding the brain mechanisms supporting cognitive and social behavior in humans, and how these mechanisms might be altered in disease states. The last 25 years have seen an explosive growth in both the methods and the theoretical constructs available to study the human brain. Advances in electrophysiological, neuroimaging, neuropsychological, psychophysical, neuropharmacological and computational approaches have provided key insights into the mechanisms of a broad range of human behaviors in both health and disease. Work in human neuroscience ranges from the cognitive domain, including areas such as memory, attention, language and perception to the social domain, with this last subject addressing topics, such as interpersonal interactions, social discourse and emotional regulation. How these processes unfold during development, mature in adulthood and often decline in aging, and how they are altered in a host of developmental, neurological and psychiatric disorders, has become increasingly amenable to human neuroscience research approaches. Work in human neuroscience has influenced many areas of inquiry ranging from social and cognitive psychology to economics, law and public policy. Accordingly, our journal will provide a forum for human research spanning all areas of human cognitive, social, developmental and translational neuroscience using any research approach.