{"title":"具有可靠性约束的不精确混合临界系统的松弛时间管理","authors":"Yi-Wen Zhang;Hui Zheng","doi":"10.1109/TC.2025.3533100","DOIUrl":null,"url":null,"abstract":"A Mixed-Criticality System (MCS) integrates multiple applications with different criticality levels on the same hardware platform. For power and energy-constrained systems such as Unmanned Aerial Vehicles, it is important to minimize energy consumption of the computing system while meeting reliability constraints. In this paper, we first determine the number of tolerated faults according to the given reliability target. Second, we propose a schedulability test for MCS with semi-clairvoyance and checkpointing. Third, we propose the Energy-Aware Scheduling with Reliability Constraint (EASRC) scheduling algorithm for MCS with semi-clairvoyance and checkpointing. It consists of an offline phase and an online phase. In the offline phase, we determine the offline processor speed by reclaiming static slack time. In the online phase, we adjust the processor speed by reclaiming dynamic slack time to further save energy. Finally, we show the performance of our proposed algorithm through experimental evaluations. The results show that the proposed algorithm can save an average of 9.67% of energy consumption compared with existing methods.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 5","pages":"1577-1588"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Slack Time Management for Imprecise Mixed-Criticality Systems With Reliability Constraints\",\"authors\":\"Yi-Wen Zhang;Hui Zheng\",\"doi\":\"10.1109/TC.2025.3533100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Mixed-Criticality System (MCS) integrates multiple applications with different criticality levels on the same hardware platform. For power and energy-constrained systems such as Unmanned Aerial Vehicles, it is important to minimize energy consumption of the computing system while meeting reliability constraints. In this paper, we first determine the number of tolerated faults according to the given reliability target. Second, we propose a schedulability test for MCS with semi-clairvoyance and checkpointing. Third, we propose the Energy-Aware Scheduling with Reliability Constraint (EASRC) scheduling algorithm for MCS with semi-clairvoyance and checkpointing. It consists of an offline phase and an online phase. In the offline phase, we determine the offline processor speed by reclaiming static slack time. In the online phase, we adjust the processor speed by reclaiming dynamic slack time to further save energy. Finally, we show the performance of our proposed algorithm through experimental evaluations. The results show that the proposed algorithm can save an average of 9.67% of energy consumption compared with existing methods.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 5\",\"pages\":\"1577-1588\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10852515/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10852515/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Slack Time Management for Imprecise Mixed-Criticality Systems With Reliability Constraints
A Mixed-Criticality System (MCS) integrates multiple applications with different criticality levels on the same hardware platform. For power and energy-constrained systems such as Unmanned Aerial Vehicles, it is important to minimize energy consumption of the computing system while meeting reliability constraints. In this paper, we first determine the number of tolerated faults according to the given reliability target. Second, we propose a schedulability test for MCS with semi-clairvoyance and checkpointing. Third, we propose the Energy-Aware Scheduling with Reliability Constraint (EASRC) scheduling algorithm for MCS with semi-clairvoyance and checkpointing. It consists of an offline phase and an online phase. In the offline phase, we determine the offline processor speed by reclaiming static slack time. In the online phase, we adjust the processor speed by reclaiming dynamic slack time to further save energy. Finally, we show the performance of our proposed algorithm through experimental evaluations. The results show that the proposed algorithm can save an average of 9.67% of energy consumption compared with existing methods.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.