{"title":"在边缘智能辅助系统中通过提前退出计算任务节省计划","authors":"Xin Niu;Xianwei Lv;Wang Chen;Chen Yu;Hai Jin","doi":"10.1109/TC.2025.3533098","DOIUrl":null,"url":null,"abstract":"Edge intelligence (EI) is a promising paradigm where end devices collaborate with edge servers to provide artificial intelligence services to users. In most realistic scenarios, end devices often move unconsciously, resulting in frequent computing migrations. Moreover, a surge in computing tasks offloaded to edge servers significantly prolongs queuing latency. These two issues obstruct the timely completion of computing tasks in EI-assisted systems. In this paper, we formulate an optimization problem aiming to maximize computing task completion under latency constraints. To address this issue, we first categorize computing tasks into new computing tasks (NCTs) and partially completed computing tasks (PCTs). Subsequently, based on model partitioning, we design a new computing task saving scheme (NSS) to optimize early exit points for NCTs and computing tasks in the queuing queue. Furthermore, we propose a partially completed computing task saving scheme (PSS) to set early exit points for PCTs during computing migrations. Numerous experiments show that computing saving schemes can achieve at least 90% computing task completion rate and up to 61.81% latency reduction compared to other methods.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 5","pages":"1565-1576"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854688","citationCount":"0","resultStr":"{\"title\":\"Computing Tasks Saving Schemes Through Early Exit in Edge Intelligence-Assisted Systems\",\"authors\":\"Xin Niu;Xianwei Lv;Wang Chen;Chen Yu;Hai Jin\",\"doi\":\"10.1109/TC.2025.3533098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Edge intelligence (EI) is a promising paradigm where end devices collaborate with edge servers to provide artificial intelligence services to users. In most realistic scenarios, end devices often move unconsciously, resulting in frequent computing migrations. Moreover, a surge in computing tasks offloaded to edge servers significantly prolongs queuing latency. These two issues obstruct the timely completion of computing tasks in EI-assisted systems. In this paper, we formulate an optimization problem aiming to maximize computing task completion under latency constraints. To address this issue, we first categorize computing tasks into new computing tasks (NCTs) and partially completed computing tasks (PCTs). Subsequently, based on model partitioning, we design a new computing task saving scheme (NSS) to optimize early exit points for NCTs and computing tasks in the queuing queue. Furthermore, we propose a partially completed computing task saving scheme (PSS) to set early exit points for PCTs during computing migrations. Numerous experiments show that computing saving schemes can achieve at least 90% computing task completion rate and up to 61.81% latency reduction compared to other methods.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 5\",\"pages\":\"1565-1576\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10854688\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10854688/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10854688/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Computing Tasks Saving Schemes Through Early Exit in Edge Intelligence-Assisted Systems
Edge intelligence (EI) is a promising paradigm where end devices collaborate with edge servers to provide artificial intelligence services to users. In most realistic scenarios, end devices often move unconsciously, resulting in frequent computing migrations. Moreover, a surge in computing tasks offloaded to edge servers significantly prolongs queuing latency. These two issues obstruct the timely completion of computing tasks in EI-assisted systems. In this paper, we formulate an optimization problem aiming to maximize computing task completion under latency constraints. To address this issue, we first categorize computing tasks into new computing tasks (NCTs) and partially completed computing tasks (PCTs). Subsequently, based on model partitioning, we design a new computing task saving scheme (NSS) to optimize early exit points for NCTs and computing tasks in the queuing queue. Furthermore, we propose a partially completed computing task saving scheme (PSS) to set early exit points for PCTs during computing migrations. Numerous experiments show that computing saving schemes can achieve at least 90% computing task completion rate and up to 61.81% latency reduction compared to other methods.
期刊介绍:
The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.