RelHDx:利用场效应晶体管加速图上学习的超维计算

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Jaeyoung Kang;Minxuan Zhou;Weihong Xu;Tajana Rosing
{"title":"RelHDx:利用场效应晶体管加速图上学习的超维计算","authors":"Jaeyoung Kang;Minxuan Zhou;Weihong Xu;Tajana Rosing","doi":"10.1109/TC.2025.3541141","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) are a powerful machine learning (ML) method to analyze graph data. The training of GNN has compute and memory-intensive phases along with irregular data movements, which makes in-memory acceleration challenging. We present a hyperdimensional computing (HDC)-based graph ML framework called RelHDx that aggregates node features and graph structure, along with representing node and edge information in high-dimensional space. RelHDx enables single-pass training and inference with simple arithmetic operations, resulting in the efficient design of graph-based ML tasks: node classification and link prediction. We accelerate RelHDx using scalable processing in-memory (PIM) architecture based on emerging ferroelectric FET (FeFET) technology. Our accelerator uses a data allocation optimization and operation scheduler to address the irregularity of the graph and maximize the performance. Evaluation results show that RelHDx offers comparable accuracy to popular GNN-based algorithms while achieving up to <inline-formula><tex-math>$63.8\\boldsymbol{\\times}$</tex-math></inline-formula> faster speed on GPU. Our FeFET-based accelerator, RelHDx-PIM, is <inline-formula><tex-math>$32\\boldsymbol{\\times}$</tex-math></inline-formula> faster for node classification, while for link prediction it is <inline-formula><tex-math>$65.4\\boldsymbol{\\times}$</tex-math></inline-formula> faster than when running on GPU. Furthermore, RelHDx-PIM improves energy efficiency by four orders of magnitude over GPU. Compared to the state-of-the-art in-memory processing-based GNN accelerator, PIM-GCN <xref>[1]</xref>, RelHDx-PIM is <inline-formula><tex-math>$10\\boldsymbol{\\times}$</tex-math></inline-formula> faster and <inline-formula><tex-math>$986\\boldsymbol{\\times}$</tex-math></inline-formula> more energy-efficient on average.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"74 5","pages":"1730-1742"},"PeriodicalIF":3.6000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RelHDx: Hyperdimensional Computing for Learning on Graphs With FeFET Acceleration\",\"authors\":\"Jaeyoung Kang;Minxuan Zhou;Weihong Xu;Tajana Rosing\",\"doi\":\"10.1109/TC.2025.3541141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) are a powerful machine learning (ML) method to analyze graph data. The training of GNN has compute and memory-intensive phases along with irregular data movements, which makes in-memory acceleration challenging. We present a hyperdimensional computing (HDC)-based graph ML framework called RelHDx that aggregates node features and graph structure, along with representing node and edge information in high-dimensional space. RelHDx enables single-pass training and inference with simple arithmetic operations, resulting in the efficient design of graph-based ML tasks: node classification and link prediction. We accelerate RelHDx using scalable processing in-memory (PIM) architecture based on emerging ferroelectric FET (FeFET) technology. Our accelerator uses a data allocation optimization and operation scheduler to address the irregularity of the graph and maximize the performance. Evaluation results show that RelHDx offers comparable accuracy to popular GNN-based algorithms while achieving up to <inline-formula><tex-math>$63.8\\\\boldsymbol{\\\\times}$</tex-math></inline-formula> faster speed on GPU. Our FeFET-based accelerator, RelHDx-PIM, is <inline-formula><tex-math>$32\\\\boldsymbol{\\\\times}$</tex-math></inline-formula> faster for node classification, while for link prediction it is <inline-formula><tex-math>$65.4\\\\boldsymbol{\\\\times}$</tex-math></inline-formula> faster than when running on GPU. Furthermore, RelHDx-PIM improves energy efficiency by four orders of magnitude over GPU. Compared to the state-of-the-art in-memory processing-based GNN accelerator, PIM-GCN <xref>[1]</xref>, RelHDx-PIM is <inline-formula><tex-math>$10\\\\boldsymbol{\\\\times}$</tex-math></inline-formula> faster and <inline-formula><tex-math>$986\\\\boldsymbol{\\\\times}$</tex-math></inline-formula> more energy-efficient on average.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"74 5\",\"pages\":\"1730-1742\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10883012/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10883012/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(gnn)是一种强大的机器学习(ML)方法,用于分析图数据。GNN的训练具有计算和内存密集型阶段以及不规则的数据移动,这使得内存加速具有挑战性。我们提出了一个基于超维计算(HDC)的图形机器学习框架,称为RelHDx,它聚合节点特征和图结构,以及在高维空间中表示节点和边缘信息。RelHDx可以通过简单的算术运算进行单次训练和推理,从而有效地设计基于图的ML任务:节点分类和链接预测。我们使用基于新兴铁电场效应管(FeFET)技术的可扩展内存处理(PIM)架构来加速RelHDx。我们的加速器使用数据分配优化和操作调度器来解决图形的不规则性并最大化性能。评估结果表明,RelHDx提供了与流行的基于gnn的算法相当的精度,同时在GPU上实现了高达63.8\boldsymbol{\times}$的速度。我们基于fefet的加速器RelHDx-PIM在节点分类方面的速度要快32美元,而在链路预测方面,它比在GPU上运行时快65.4美元。此外,RelHDx-PIM的能效比GPU提高了4个数量级。与最先进的基于内存处理的GNN加速器PIM-GCN[1]相比,RelHDx-PIM平均速度快10美元,能效高986美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RelHDx: Hyperdimensional Computing for Learning on Graphs With FeFET Acceleration
Graph neural networks (GNNs) are a powerful machine learning (ML) method to analyze graph data. The training of GNN has compute and memory-intensive phases along with irregular data movements, which makes in-memory acceleration challenging. We present a hyperdimensional computing (HDC)-based graph ML framework called RelHDx that aggregates node features and graph structure, along with representing node and edge information in high-dimensional space. RelHDx enables single-pass training and inference with simple arithmetic operations, resulting in the efficient design of graph-based ML tasks: node classification and link prediction. We accelerate RelHDx using scalable processing in-memory (PIM) architecture based on emerging ferroelectric FET (FeFET) technology. Our accelerator uses a data allocation optimization and operation scheduler to address the irregularity of the graph and maximize the performance. Evaluation results show that RelHDx offers comparable accuracy to popular GNN-based algorithms while achieving up to $63.8\boldsymbol{\times}$ faster speed on GPU. Our FeFET-based accelerator, RelHDx-PIM, is $32\boldsymbol{\times}$ faster for node classification, while for link prediction it is $65.4\boldsymbol{\times}$ faster than when running on GPU. Furthermore, RelHDx-PIM improves energy efficiency by four orders of magnitude over GPU. Compared to the state-of-the-art in-memory processing-based GNN accelerator, PIM-GCN [1], RelHDx-PIM is $10\boldsymbol{\times}$ faster and $986\boldsymbol{\times}$ more energy-efficient on average.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信