{"title":"子集仿真中的自适应提案长度尺度","authors":"Siu-Kui Au, Xin Zhou","doi":"10.1016/j.ress.2025.111069","DOIUrl":null,"url":null,"abstract":"<div><div>Subset Simulation (SS) is a Monte Carlo method for estimating the failure probability of a system whose response is a ‘black box’, for which little or no prior information is available for variance reduction. Pivotal to SS is an efficient mechanism for generating candidates that are accepted/rejected by Markov Chain Monte Carlo (MCMC) to produce an unbiased estimate. In the standard Normal space, conditional sampling scheme offers an elegant means for generating candidates, reducing the choice of proposal distribution in MCMC to a correlation parameter. Recent developments feature adaptive schemes to achieve some target acceptance rate. For a generic 1-D linear problem, this work obtains analytically the optimal correlation parameter that minimises the lag-1 correlation of samples in a simulation level of SS. Despite the 1-D linear origin, numerical investigations reveal that the resulting adaptive scheme shows promise for effectively suppressing the systematic growth of candidate rejection and correlation along Markov chains for problems of wider context, e.g., with nonlinearity, high dimensions and multiple failure modes. The adaptive scheme exhibits robustness for coping with complex problems where it is difficult to generate failure samples, although efficiency gain in variance reduction may be offset by increased correlation suspectedly between simulation levels. The analytical results derived in this work provide insights on how proposal PDFs should be scaled to cope with rare events.</div></div>","PeriodicalId":54500,"journal":{"name":"Reliability Engineering & System Safety","volume":"261 ","pages":"Article 111069"},"PeriodicalIF":9.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive proposal length scale in Subset Simulation\",\"authors\":\"Siu-Kui Au, Xin Zhou\",\"doi\":\"10.1016/j.ress.2025.111069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Subset Simulation (SS) is a Monte Carlo method for estimating the failure probability of a system whose response is a ‘black box’, for which little or no prior information is available for variance reduction. Pivotal to SS is an efficient mechanism for generating candidates that are accepted/rejected by Markov Chain Monte Carlo (MCMC) to produce an unbiased estimate. In the standard Normal space, conditional sampling scheme offers an elegant means for generating candidates, reducing the choice of proposal distribution in MCMC to a correlation parameter. Recent developments feature adaptive schemes to achieve some target acceptance rate. For a generic 1-D linear problem, this work obtains analytically the optimal correlation parameter that minimises the lag-1 correlation of samples in a simulation level of SS. Despite the 1-D linear origin, numerical investigations reveal that the resulting adaptive scheme shows promise for effectively suppressing the systematic growth of candidate rejection and correlation along Markov chains for problems of wider context, e.g., with nonlinearity, high dimensions and multiple failure modes. The adaptive scheme exhibits robustness for coping with complex problems where it is difficult to generate failure samples, although efficiency gain in variance reduction may be offset by increased correlation suspectedly between simulation levels. The analytical results derived in this work provide insights on how proposal PDFs should be scaled to cope with rare events.</div></div>\",\"PeriodicalId\":54500,\"journal\":{\"name\":\"Reliability Engineering & System Safety\",\"volume\":\"261 \",\"pages\":\"Article 111069\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reliability Engineering & System Safety\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0951832025002704\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reliability Engineering & System Safety","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0951832025002704","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Adaptive proposal length scale in Subset Simulation
Subset Simulation (SS) is a Monte Carlo method for estimating the failure probability of a system whose response is a ‘black box’, for which little or no prior information is available for variance reduction. Pivotal to SS is an efficient mechanism for generating candidates that are accepted/rejected by Markov Chain Monte Carlo (MCMC) to produce an unbiased estimate. In the standard Normal space, conditional sampling scheme offers an elegant means for generating candidates, reducing the choice of proposal distribution in MCMC to a correlation parameter. Recent developments feature adaptive schemes to achieve some target acceptance rate. For a generic 1-D linear problem, this work obtains analytically the optimal correlation parameter that minimises the lag-1 correlation of samples in a simulation level of SS. Despite the 1-D linear origin, numerical investigations reveal that the resulting adaptive scheme shows promise for effectively suppressing the systematic growth of candidate rejection and correlation along Markov chains for problems of wider context, e.g., with nonlinearity, high dimensions and multiple failure modes. The adaptive scheme exhibits robustness for coping with complex problems where it is difficult to generate failure samples, although efficiency gain in variance reduction may be offset by increased correlation suspectedly between simulation levels. The analytical results derived in this work provide insights on how proposal PDFs should be scaled to cope with rare events.
期刊介绍:
Elsevier publishes Reliability Engineering & System Safety in association with the European Safety and Reliability Association and the Safety Engineering and Risk Analysis Division. The international journal is devoted to developing and applying methods to enhance the safety and reliability of complex technological systems, like nuclear power plants, chemical plants, hazardous waste facilities, space systems, offshore and maritime systems, transportation systems, constructed infrastructure, and manufacturing plants. The journal normally publishes only articles that involve the analysis of substantive problems related to the reliability of complex systems or present techniques and/or theoretical results that have a discernable relationship to the solution of such problems. An important aim is to balance academic material and practical applications.