{"title":"细胞外基质粘弹性在发育和疾病中的作用。","authors":"Olivia Courbot, Alberto Elosegui-Artola","doi":"10.1038/s44341-025-00014-6","DOIUrl":null,"url":null,"abstract":"<p><p>For several decades, research has studied the influence of the extracellular matrix (ECM) mechanical properties in cell response, primarily emphasising its elasticity as the main determinant of cell and tissue behaviour. However, the ECM is not purely elastic; it is viscoelastic. ECM viscoelasticity has now emerged as a major regulator of collective cell dynamics. This review highlights recent findings on the role of ECM viscoelasticity in development and pathology.</p>","PeriodicalId":501703,"journal":{"name":"npj Biological Physics and Mechanics","volume":"2 1","pages":"10"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968406/pdf/","citationCount":"0","resultStr":"{\"title\":\"The role of extracellular matrix viscoelasticity in development and disease.\",\"authors\":\"Olivia Courbot, Alberto Elosegui-Artola\",\"doi\":\"10.1038/s44341-025-00014-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For several decades, research has studied the influence of the extracellular matrix (ECM) mechanical properties in cell response, primarily emphasising its elasticity as the main determinant of cell and tissue behaviour. However, the ECM is not purely elastic; it is viscoelastic. ECM viscoelasticity has now emerged as a major regulator of collective cell dynamics. This review highlights recent findings on the role of ECM viscoelasticity in development and pathology.</p>\",\"PeriodicalId\":501703,\"journal\":{\"name\":\"npj Biological Physics and Mechanics\",\"volume\":\"2 1\",\"pages\":\"10\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11968406/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Biological Physics and Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s44341-025-00014-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Biological Physics and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44341-025-00014-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
The role of extracellular matrix viscoelasticity in development and disease.
For several decades, research has studied the influence of the extracellular matrix (ECM) mechanical properties in cell response, primarily emphasising its elasticity as the main determinant of cell and tissue behaviour. However, the ECM is not purely elastic; it is viscoelastic. ECM viscoelasticity has now emerged as a major regulator of collective cell dynamics. This review highlights recent findings on the role of ECM viscoelasticity in development and pathology.