雌性小鼠听觉皮层的局部偏侧电路调谐。

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Soomin C Song, Robert C Froemke
{"title":"雌性小鼠听觉皮层的局部偏侧电路调谐。","authors":"Soomin C Song, Robert C Froemke","doi":"10.1016/j.neures.2025.03.009","DOIUrl":null,"url":null,"abstract":"<p><p>Most offspring are born helpless, requiring intense caregiving from parents especially during the first few days of neonatal life. For many species, infant cries are a primary signal used by parents to provide caregiving. Previously we and others documented how maternal left auditory cortex rapidly becomes sensitized to pup calls over hours of parental experience, enabled by oxytocin. The speed and robustness of this maternal plasticity suggests cortical pre-tuning or initial bias for pup call stimulus features. Here we examine the circuit basis of left-lateralized tuning to vocalization features with whole-cell recordings in brain slices. We found that layer 2/3 pyramidal cells of female left auditory cortex show selective suppression of inhibitory inputs with repeated stimulation at the fundamental pup call rate (inter-stimulus interval ~150 msec) in pup-naïve females and expanded with maternal experience. However, optogenetic stimulation of cortical inhibitory cells showed that inputs from somatostatin-positive and oxytocin-receptor-expressing interneurons were less suppressed at these rates. This suggested that disynaptic inhibition rather than monosynaptic depression was a major mechanism underlying pre-tuning of cortical excitatory neurons, confirmed with simulations. Thus cortical interneuron specializations can augment neuroplasticity mechanisms to ensure fast appropriate caregiving in response to infant cries.</p>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lateralized local circuit tuning in female mouse auditory cortex.\",\"authors\":\"Soomin C Song, Robert C Froemke\",\"doi\":\"10.1016/j.neures.2025.03.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Most offspring are born helpless, requiring intense caregiving from parents especially during the first few days of neonatal life. For many species, infant cries are a primary signal used by parents to provide caregiving. Previously we and others documented how maternal left auditory cortex rapidly becomes sensitized to pup calls over hours of parental experience, enabled by oxytocin. The speed and robustness of this maternal plasticity suggests cortical pre-tuning or initial bias for pup call stimulus features. Here we examine the circuit basis of left-lateralized tuning to vocalization features with whole-cell recordings in brain slices. We found that layer 2/3 pyramidal cells of female left auditory cortex show selective suppression of inhibitory inputs with repeated stimulation at the fundamental pup call rate (inter-stimulus interval ~150 msec) in pup-naïve females and expanded with maternal experience. However, optogenetic stimulation of cortical inhibitory cells showed that inputs from somatostatin-positive and oxytocin-receptor-expressing interneurons were less suppressed at these rates. This suggested that disynaptic inhibition rather than monosynaptic depression was a major mechanism underlying pre-tuning of cortical excitatory neurons, confirmed with simulations. Thus cortical interneuron specializations can augment neuroplasticity mechanisms to ensure fast appropriate caregiving in response to infant cries.</p>\",\"PeriodicalId\":19146,\"journal\":{\"name\":\"Neuroscience Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neures.2025.03.009\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neures.2025.03.009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大多数幼崽出生时都是无助的,需要父母的悉心照顾,尤其是在新生儿生命的最初几天。对许多物种来说,婴儿的哭声是父母用来提供照顾的主要信号。之前,我们和其他人记录了母亲的左听觉皮层如何在数小时的育儿经历中迅速对幼崽的叫声变得敏感,这是由催产素激活的。这种母性可塑性的速度和稳健性表明,皮层对幼犬叫声刺激特征进行了预先调整或初始偏差。在这里,我们通过大脑切片的全细胞记录来研究左侧调谐到发声特征的电路基础。研究发现,pup-naïve母犬左侧听觉皮层2/3层锥体细胞在基本幼崽鸣叫频率(刺激间隔~150 msec)的重复刺激下,对抑制性输入有选择性抑制,并随着母性经验的增加而扩大。然而,皮质抑制细胞的光遗传刺激显示,来自生长抑素阳性和催产素受体表达的中间神经元的输入在这些速率下受到的抑制较小。这表明,双突触抑制而非单突触抑制是皮层兴奋性神经元预调谐的主要机制,模拟证实了这一点。因此,皮层间神经元特化可以增强神经可塑性机制,以确保对婴儿哭声作出快速适当的照顾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lateralized local circuit tuning in female mouse auditory cortex.

Most offspring are born helpless, requiring intense caregiving from parents especially during the first few days of neonatal life. For many species, infant cries are a primary signal used by parents to provide caregiving. Previously we and others documented how maternal left auditory cortex rapidly becomes sensitized to pup calls over hours of parental experience, enabled by oxytocin. The speed and robustness of this maternal plasticity suggests cortical pre-tuning or initial bias for pup call stimulus features. Here we examine the circuit basis of left-lateralized tuning to vocalization features with whole-cell recordings in brain slices. We found that layer 2/3 pyramidal cells of female left auditory cortex show selective suppression of inhibitory inputs with repeated stimulation at the fundamental pup call rate (inter-stimulus interval ~150 msec) in pup-naïve females and expanded with maternal experience. However, optogenetic stimulation of cortical inhibitory cells showed that inputs from somatostatin-positive and oxytocin-receptor-expressing interneurons were less suppressed at these rates. This suggested that disynaptic inhibition rather than monosynaptic depression was a major mechanism underlying pre-tuning of cortical excitatory neurons, confirmed with simulations. Thus cortical interneuron specializations can augment neuroplasticity mechanisms to ensure fast appropriate caregiving in response to infant cries.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience Research
Neuroscience Research 医学-神经科学
CiteScore
5.60
自引率
3.40%
发文量
136
审稿时长
28 days
期刊介绍: The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信