Maryam Keshavarzi, Mostafa Salahshoor, Gholamhassan Najafi, Mohammad Hadi Khoshtaghaza, Shiva Gorjian, Hamid Ghomi, Pourya Seyfi
{"title":"针对板干燥空气电晕放电中化学物质的空间分布","authors":"Maryam Keshavarzi, Mostafa Salahshoor, Gholamhassan Najafi, Mohammad Hadi Khoshtaghaza, Shiva Gorjian, Hamid Ghomi, Pourya Seyfi","doi":"10.1007/s11090-025-10538-3","DOIUrl":null,"url":null,"abstract":"<div><p>The reactive oxygen and nitrogen species generated by plasma have demonstrated consequential effects on diverse commercial applications. Hence, studying the chemistry and spatial distribution of reactive species in plasma is imperative for understanding the influence of plasma in various applications. This study aims to systematically explore the plasma chemistry of a pin-to-plate negative direct current (DC) corona discharge in dry air, using simulations based on a two dimensional (2D) axisymmetric fluid model. The model encompasses a comprehensive set of chemical reactions involving 33 biomedically active species (ROS and RNS). This study entails a rigorous evaluation of the 2D spatial distribution of all chemical species, detailing their minimum and maximum values, at a needle voltage of −10 kV. To enhance visualization and enable comparisons, we integrate contour lines into the density distributions to indicate the average density of each species. <span>\\({\\text{N}}_{2}\\left({\\text{A}}^{3}\\sum\\right)\\)</span> among nitrogen species, O<sub>3</sub> and <span>\\({\\text{O}}_{2}\\left({\\text{a}}^{1}\\Delta\\right)\\)</span> among oxygen species, and N<sub>2</sub>O among NOx species exhibit the highest average density in the simulation domain. Furthermore, key reactions involved in the production and consumption of each species are thoroughly discussed. Additionally, the research examines the influence of needle voltage, ranging from −5 to −12.5 kV, on the peak and average densities of all species investigated. Lastly, to validate the simulation model, an experimental study of the pin-to-plate negative DC corona discharge is conducted, during which the voltage-current characteristics and optical emission spectrometry (OES) profiles are measured. The simulation results are in good agreement with the experimental data.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"873 - 918"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial Distributions of Chemical Species in a Pin-to-plate Dry Air Corona Discharge\",\"authors\":\"Maryam Keshavarzi, Mostafa Salahshoor, Gholamhassan Najafi, Mohammad Hadi Khoshtaghaza, Shiva Gorjian, Hamid Ghomi, Pourya Seyfi\",\"doi\":\"10.1007/s11090-025-10538-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reactive oxygen and nitrogen species generated by plasma have demonstrated consequential effects on diverse commercial applications. Hence, studying the chemistry and spatial distribution of reactive species in plasma is imperative for understanding the influence of plasma in various applications. This study aims to systematically explore the plasma chemistry of a pin-to-plate negative direct current (DC) corona discharge in dry air, using simulations based on a two dimensional (2D) axisymmetric fluid model. The model encompasses a comprehensive set of chemical reactions involving 33 biomedically active species (ROS and RNS). This study entails a rigorous evaluation of the 2D spatial distribution of all chemical species, detailing their minimum and maximum values, at a needle voltage of −10 kV. To enhance visualization and enable comparisons, we integrate contour lines into the density distributions to indicate the average density of each species. <span>\\\\({\\\\text{N}}_{2}\\\\left({\\\\text{A}}^{3}\\\\sum\\\\right)\\\\)</span> among nitrogen species, O<sub>3</sub> and <span>\\\\({\\\\text{O}}_{2}\\\\left({\\\\text{a}}^{1}\\\\Delta\\\\right)\\\\)</span> among oxygen species, and N<sub>2</sub>O among NOx species exhibit the highest average density in the simulation domain. Furthermore, key reactions involved in the production and consumption of each species are thoroughly discussed. Additionally, the research examines the influence of needle voltage, ranging from −5 to −12.5 kV, on the peak and average densities of all species investigated. Lastly, to validate the simulation model, an experimental study of the pin-to-plate negative DC corona discharge is conducted, during which the voltage-current characteristics and optical emission spectrometry (OES) profiles are measured. The simulation results are in good agreement with the experimental data.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 3\",\"pages\":\"873 - 918\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10538-3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10538-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Spatial Distributions of Chemical Species in a Pin-to-plate Dry Air Corona Discharge
The reactive oxygen and nitrogen species generated by plasma have demonstrated consequential effects on diverse commercial applications. Hence, studying the chemistry and spatial distribution of reactive species in plasma is imperative for understanding the influence of plasma in various applications. This study aims to systematically explore the plasma chemistry of a pin-to-plate negative direct current (DC) corona discharge in dry air, using simulations based on a two dimensional (2D) axisymmetric fluid model. The model encompasses a comprehensive set of chemical reactions involving 33 biomedically active species (ROS and RNS). This study entails a rigorous evaluation of the 2D spatial distribution of all chemical species, detailing their minimum and maximum values, at a needle voltage of −10 kV. To enhance visualization and enable comparisons, we integrate contour lines into the density distributions to indicate the average density of each species. \({\text{N}}_{2}\left({\text{A}}^{3}\sum\right)\) among nitrogen species, O3 and \({\text{O}}_{2}\left({\text{a}}^{1}\Delta\right)\) among oxygen species, and N2O among NOx species exhibit the highest average density in the simulation domain. Furthermore, key reactions involved in the production and consumption of each species are thoroughly discussed. Additionally, the research examines the influence of needle voltage, ranging from −5 to −12.5 kV, on the peak and average densities of all species investigated. Lastly, to validate the simulation model, an experimental study of the pin-to-plate negative DC corona discharge is conducted, during which the voltage-current characteristics and optical emission spectrometry (OES) profiles are measured. The simulation results are in good agreement with the experimental data.
期刊介绍:
Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.