平面不对称空心阴极溅射系统的靶材扩散传输

IF 2.6 3区 物理与天体物理 Q3 ENGINEERING, CHEMICAL
D. A. Butnyakov, I. A. Sorokin, D. V. Kolodko
{"title":"平面不对称空心阴极溅射系统的靶材扩散传输","authors":"D. A. Butnyakov,&nbsp;I. A. Sorokin,&nbsp;D. V. Kolodko","doi":"10.1007/s11090-025-10550-7","DOIUrl":null,"url":null,"abstract":"<div><p>This work investigates the features of a sputtering system with an asymmetrical planar hollow cathode discharge at 10–100 Pa pressures. The asymmetrical hollow cathode discharge occurs between two planar cathodes with different negative potentials. The problem of diffusion transport of sputtered material was formulated and numerically solved. To verify the results of the numerical model, tungsten coatings were deposited at a pressure of 40 Pa. The numerical model results based on the diffusion transport were compared with experimental data. The qualitative agreement between the model and experimental results was demonstrated. For substrates with positive curvature and a size smaller than the output aperture of the sputtering system, a characteristic increase in film thickness to the edges has been experimentally and numerically shown, which is associated with the diffusive nature of the sputtered material transport.</p></div>","PeriodicalId":734,"journal":{"name":"Plasma Chemistry and Plasma Processing","volume":"45 3","pages":"1029 - 1044"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion Transport of Target Material for a Planar Asymmetrical Hollow Cathode Sputtering System\",\"authors\":\"D. A. Butnyakov,&nbsp;I. A. Sorokin,&nbsp;D. V. Kolodko\",\"doi\":\"10.1007/s11090-025-10550-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work investigates the features of a sputtering system with an asymmetrical planar hollow cathode discharge at 10–100 Pa pressures. The asymmetrical hollow cathode discharge occurs between two planar cathodes with different negative potentials. The problem of diffusion transport of sputtered material was formulated and numerically solved. To verify the results of the numerical model, tungsten coatings were deposited at a pressure of 40 Pa. The numerical model results based on the diffusion transport were compared with experimental data. The qualitative agreement between the model and experimental results was demonstrated. For substrates with positive curvature and a size smaller than the output aperture of the sputtering system, a characteristic increase in film thickness to the edges has been experimentally and numerically shown, which is associated with the diffusive nature of the sputtered material transport.</p></div>\",\"PeriodicalId\":734,\"journal\":{\"name\":\"Plasma Chemistry and Plasma Processing\",\"volume\":\"45 3\",\"pages\":\"1029 - 1044\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Chemistry and Plasma Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11090-025-10550-7\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Chemistry and Plasma Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11090-025-10550-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了非对称平面空心阴极放电在10 - 100pa压力下溅射系统的特性。不对称空心阴极放电发生在两个具有不同负电位的平面阴极之间。对溅射材料的扩散输运问题进行了阐述和数值求解。为了验证数值模型的结果,在40 Pa的压力下沉积了钨涂层。基于扩散输运的数值模型结果与实验数据进行了比较。结果表明,模型与实验结果在定性上基本一致。对于具有正曲率且尺寸小于溅射系统输出孔径的衬底,实验和数值结果表明,薄膜厚度的特征增加到边缘,这与溅射材料输运的扩散性质有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Diffusion Transport of Target Material for a Planar Asymmetrical Hollow Cathode Sputtering System

Diffusion Transport of Target Material for a Planar Asymmetrical Hollow Cathode Sputtering System

This work investigates the features of a sputtering system with an asymmetrical planar hollow cathode discharge at 10–100 Pa pressures. The asymmetrical hollow cathode discharge occurs between two planar cathodes with different negative potentials. The problem of diffusion transport of sputtered material was formulated and numerically solved. To verify the results of the numerical model, tungsten coatings were deposited at a pressure of 40 Pa. The numerical model results based on the diffusion transport were compared with experimental data. The qualitative agreement between the model and experimental results was demonstrated. For substrates with positive curvature and a size smaller than the output aperture of the sputtering system, a characteristic increase in film thickness to the edges has been experimentally and numerically shown, which is associated with the diffusive nature of the sputtered material transport.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Chemistry and Plasma Processing
Plasma Chemistry and Plasma Processing 工程技术-工程:化工
CiteScore
5.90
自引率
8.30%
发文量
73
审稿时长
6-12 weeks
期刊介绍: Publishing original papers on fundamental and applied research in plasma chemistry and plasma processing, the scope of this journal includes processing plasmas ranging from non-thermal plasmas to thermal plasmas, and fundamental plasma studies as well as studies of specific plasma applications. Such applications include but are not limited to plasma catalysis, environmental processing including treatment of liquids and gases, biological applications of plasmas including plasma medicine and agriculture, surface modification and deposition, powder and nanostructure synthesis, energy applications including plasma combustion and reforming, resource recovery, coupling of plasmas and electrochemistry, and plasma etching. Studies of chemical kinetics in plasmas, and the interactions of plasmas with surfaces are also solicited. It is essential that submissions include substantial consideration of the role of the plasma, for example, the relevant plasma chemistry, plasma physics or plasma–surface interactions; manuscripts that consider solely the properties of materials or substances processed using a plasma are not within the journal’s scope.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信