L. Benichou , F. Mazen , T. Salvetat , F. Madeira , F. Rieutord
{"title":"离子注入诱导分层获得的独立膜的应力管理","authors":"L. Benichou , F. Mazen , T. Salvetat , F. Madeira , F. Rieutord","doi":"10.1016/j.sse.2025.109120","DOIUrl":null,"url":null,"abstract":"<div><div>Stress management in freestanding silicon thin films obtained through ion implantation-induced delamination is investigated. Residual stress is measured through curvature of the rolled film. With a proper thermal annealing process, we can effectively relax this stress, facilitating the film manipulation and transfer. The measurements reveal a slight stress discrepancy between freestanding films and donor wafers which is discussed. The delamination of freestanding membranes opens up new possibilities for Smart-Cut™ technology on various applications.</div></div>","PeriodicalId":21909,"journal":{"name":"Solid-state Electronics","volume":"227 ","pages":"Article 109120"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stress management in freestanding membranes obtained by ion implantation induced delamination\",\"authors\":\"L. Benichou , F. Mazen , T. Salvetat , F. Madeira , F. Rieutord\",\"doi\":\"10.1016/j.sse.2025.109120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stress management in freestanding silicon thin films obtained through ion implantation-induced delamination is investigated. Residual stress is measured through curvature of the rolled film. With a proper thermal annealing process, we can effectively relax this stress, facilitating the film manipulation and transfer. The measurements reveal a slight stress discrepancy between freestanding films and donor wafers which is discussed. The delamination of freestanding membranes opens up new possibilities for Smart-Cut™ technology on various applications.</div></div>\",\"PeriodicalId\":21909,\"journal\":{\"name\":\"Solid-state Electronics\",\"volume\":\"227 \",\"pages\":\"Article 109120\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid-state Electronics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0038110125000656\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid-state Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0038110125000656","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Stress management in freestanding membranes obtained by ion implantation induced delamination
Stress management in freestanding silicon thin films obtained through ion implantation-induced delamination is investigated. Residual stress is measured through curvature of the rolled film. With a proper thermal annealing process, we can effectively relax this stress, facilitating the film manipulation and transfer. The measurements reveal a slight stress discrepancy between freestanding films and donor wafers which is discussed. The delamination of freestanding membranes opens up new possibilities for Smart-Cut™ technology on various applications.
期刊介绍:
It is the aim of this journal to bring together in one publication outstanding papers reporting new and original work in the following areas: (1) applications of solid-state physics and technology to electronics and optoelectronics, including theory and device design; (2) optical, electrical, morphological characterization techniques and parameter extraction of devices; (3) fabrication of semiconductor devices, and also device-related materials growth, measurement and evaluation; (4) the physics and modeling of submicron and nanoscale microelectronic and optoelectronic devices, including processing, measurement, and performance evaluation; (5) applications of numerical methods to the modeling and simulation of solid-state devices and processes; and (6) nanoscale electronic and optoelectronic devices, photovoltaics, sensors, and MEMS based on semiconductor and alternative electronic materials; (7) synthesis and electrooptical properties of materials for novel devices.