采用优化的氧化铝杂化填料提高液晶环氧复合材料的导热性能和绝缘性能

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yuanhang Zhou, Xiangyu Tian, Xiaolong Cao, Qiong Wang, Jinkai Wang, Yingge Xu, Meng Luo, Zhengdong Wang
{"title":"采用优化的氧化铝杂化填料提高液晶环氧复合材料的导热性能和绝缘性能","authors":"Yuanhang Zhou,&nbsp;Xiangyu Tian,&nbsp;Xiaolong Cao,&nbsp;Qiong Wang,&nbsp;Jinkai Wang,&nbsp;Yingge Xu,&nbsp;Meng Luo,&nbsp;Zhengdong Wang","doi":"10.1016/j.mtphys.2025.101719","DOIUrl":null,"url":null,"abstract":"<div><div>In order to satisfy the increasing demand for packaging materials of power devices, a contradiction between thermal conductivity and breakdown strength urgently needs to be addressed. In this work, we reported a novel liquid crystalline epoxy composites with a hybrid filler of nano-diamond and modified alumina (AO∗@ND) by self-assembly polymerization of cationic monomer, electrostatic adsorption and a calcination technique. The thermal conductivity and dielectric breakdown strength of the composite with biphenyl liquid crystalline epoxy and 10 wt% AO∗@ND (500 °C-6 h) were 0.99 W/m·K and 75.2 kV/mm, respectively, which achieve a remarkably synergistic enhancement compared to those (0.2 W/m·K, 69.64 kV/mm) of the commercial bisphenol A epoxy for packaging materials of power devices. The mechanism for the simultaneous increase was indicated by the simulation calculations and experimental results. This research could provide a novel insight for the development of high-performance epoxy composite materials for the encapsulation of new-generation power devices.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101719"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced thermal conductivity and electrical insulation properties of liquid crystalline epoxy composites by using optimized alumina hybrid fillers\",\"authors\":\"Yuanhang Zhou,&nbsp;Xiangyu Tian,&nbsp;Xiaolong Cao,&nbsp;Qiong Wang,&nbsp;Jinkai Wang,&nbsp;Yingge Xu,&nbsp;Meng Luo,&nbsp;Zhengdong Wang\",\"doi\":\"10.1016/j.mtphys.2025.101719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to satisfy the increasing demand for packaging materials of power devices, a contradiction between thermal conductivity and breakdown strength urgently needs to be addressed. In this work, we reported a novel liquid crystalline epoxy composites with a hybrid filler of nano-diamond and modified alumina (AO∗@ND) by self-assembly polymerization of cationic monomer, electrostatic adsorption and a calcination technique. The thermal conductivity and dielectric breakdown strength of the composite with biphenyl liquid crystalline epoxy and 10 wt% AO∗@ND (500 °C-6 h) were 0.99 W/m·K and 75.2 kV/mm, respectively, which achieve a remarkably synergistic enhancement compared to those (0.2 W/m·K, 69.64 kV/mm) of the commercial bisphenol A epoxy for packaging materials of power devices. The mechanism for the simultaneous increase was indicated by the simulation calculations and experimental results. This research could provide a novel insight for the development of high-performance epoxy composite materials for the encapsulation of new-generation power devices.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"54 \",\"pages\":\"Article 101719\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000756\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000756","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了满足功率器件对封装材料日益增长的需求,热导率与击穿强度之间的矛盾亟待解决。本文报道了采用阳离子单体自组装聚合、静电吸附和煅烧技术制备纳米金刚石和改性氧化铝(AO*@ND)杂化填料的新型液晶环氧复合材料。联苯液晶环氧树脂和10 wt.% AO*@ND(500°C-6 h)复合材料的导热系数和介电击穿强度分别为0.99 W/m·K和75.2 kV/mm,与工业双酚a环氧树脂(0.2 W/m·K, 69.64 kV/mm)相比,具有显著的增效增强作用。仿真计算和实验结果表明了同步增大的机理。本研究可为新一代电力器件封装用高性能环氧复合材料的开发提供新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced thermal conductivity and electrical insulation properties of liquid crystalline epoxy composites by using optimized alumina hybrid fillers

Enhanced thermal conductivity and electrical insulation properties of liquid crystalline epoxy composites by using optimized alumina hybrid fillers

Enhanced thermal conductivity and electrical insulation properties of liquid crystalline epoxy composites by using optimized alumina hybrid fillers
In order to satisfy the increasing demand for packaging materials of power devices, a contradiction between thermal conductivity and breakdown strength urgently needs to be addressed. In this work, we reported a novel liquid crystalline epoxy composites with a hybrid filler of nano-diamond and modified alumina (AO∗@ND) by self-assembly polymerization of cationic monomer, electrostatic adsorption and a calcination technique. The thermal conductivity and dielectric breakdown strength of the composite with biphenyl liquid crystalline epoxy and 10 wt% AO∗@ND (500 °C-6 h) were 0.99 W/m·K and 75.2 kV/mm, respectively, which achieve a remarkably synergistic enhancement compared to those (0.2 W/m·K, 69.64 kV/mm) of the commercial bisphenol A epoxy for packaging materials of power devices. The mechanism for the simultaneous increase was indicated by the simulation calculations and experimental results. This research could provide a novel insight for the development of high-performance epoxy composite materials for the encapsulation of new-generation power devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信