Bing Bai , Bixia Zhang , Yanjie Ji , Yongchen Zong
{"title":"考虑结晶过程的非饱和硫酸盐盐渍土多场热力学模型","authors":"Bing Bai , Bixia Zhang , Yanjie Ji , Yongchen Zong","doi":"10.1016/j.compgeo.2025.107251","DOIUrl":null,"url":null,"abstract":"<div><div>A novel thermo-hydro-mechanical-chemical (THMC) coupling model grounded in thermodynamic dissipation theory was established to unravel the intricate behavior of unsaturated sulfate-saline soils during cooling crystallization. The model quantifies energy transfer and dissipation during crystallization and introduces a method to calculate the amount of sulfate crystallization. It intricately captures the interdependencies between crystallization, pore water pressure, crystallization pressure and volumetric expansion, while also accounting for the dynamic feedback of latent heat from phase transitions on heat conduction. The reliability of the model was validated through experimental data. Numerical simulations explored the effects of cooling paths, thermal conductivity, initial salt content and initial porosity on the crystallization behavior and mechanical properties. The model provides theoretical support for optimizing the engineering design and facility maintenance of sulfate-saline soils.</div></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":"184 ","pages":"Article 107251"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A thermodynamic multi-field model for unsaturated sulfate-saline soils considering crystallization process\",\"authors\":\"Bing Bai , Bixia Zhang , Yanjie Ji , Yongchen Zong\",\"doi\":\"10.1016/j.compgeo.2025.107251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel thermo-hydro-mechanical-chemical (THMC) coupling model grounded in thermodynamic dissipation theory was established to unravel the intricate behavior of unsaturated sulfate-saline soils during cooling crystallization. The model quantifies energy transfer and dissipation during crystallization and introduces a method to calculate the amount of sulfate crystallization. It intricately captures the interdependencies between crystallization, pore water pressure, crystallization pressure and volumetric expansion, while also accounting for the dynamic feedback of latent heat from phase transitions on heat conduction. The reliability of the model was validated through experimental data. Numerical simulations explored the effects of cooling paths, thermal conductivity, initial salt content and initial porosity on the crystallization behavior and mechanical properties. The model provides theoretical support for optimizing the engineering design and facility maintenance of sulfate-saline soils.</div></div>\",\"PeriodicalId\":55217,\"journal\":{\"name\":\"Computers and Geotechnics\",\"volume\":\"184 \",\"pages\":\"Article 107251\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers and Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266352X25002009\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X25002009","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A thermodynamic multi-field model for unsaturated sulfate-saline soils considering crystallization process
A novel thermo-hydro-mechanical-chemical (THMC) coupling model grounded in thermodynamic dissipation theory was established to unravel the intricate behavior of unsaturated sulfate-saline soils during cooling crystallization. The model quantifies energy transfer and dissipation during crystallization and introduces a method to calculate the amount of sulfate crystallization. It intricately captures the interdependencies between crystallization, pore water pressure, crystallization pressure and volumetric expansion, while also accounting for the dynamic feedback of latent heat from phase transitions on heat conduction. The reliability of the model was validated through experimental data. Numerical simulations explored the effects of cooling paths, thermal conductivity, initial salt content and initial porosity on the crystallization behavior and mechanical properties. The model provides theoretical support for optimizing the engineering design and facility maintenance of sulfate-saline soils.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.