利用机器学习和生物信息学识别与子痫前期缺氧相关基因有关的诊断生物标志物。

IF 1.7 4区 医学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jianfang Cao, Chaofen Zhou, Heshui Mao, Xia Zhang
{"title":"利用机器学习和生物信息学识别与子痫前期缺氧相关基因有关的诊断生物标志物。","authors":"Jianfang Cao, Chaofen Zhou, Heshui Mao, Xia Zhang","doi":"10.1080/10255842.2025.2484572","DOIUrl":null,"url":null,"abstract":"<p><p>PE is a serious form of pregnancy-related hypertension. Hypoxia can induce cellular dysfunction, adversely affecting both the infant and the mother. This study aims to investigate the relationship between HRGs and the diagnosis of PE, seeking to enhance our understanding of potential molecular mechanisms and offer new perspectives for the detection and treatment of the condition. A WGCNA network was established to identify key genes significantly associated with traits of PE. LASSO, SVM-RFE, and RF were utilized to identify feature genes. Calibration curves and DCA were employed to assess the diagnostic performance of the comprehensive nomogram. Consensus clustering was applied to identify subtypes of PE. GSEA and the construction of a ceRNA network were used to explore the potential biological functions and regulatory mechanisms of the identified feature genes. Furthermore, ssGSEA was conducted to investigate the immune landscape associated with PE. We successfully identified three potential diagnostic biomarkers for PE: P4HA1, NDRG1, and BHLHE40. Furthermore, the nomogram exhibited strong diagnostic performance. In patients with PE, the abundance of pro-inflammatory immune cells was significantly elevated, reflecting characteristics of high infiltration. The levels of immune cells infiltration were significantly correlated with the expression of the identified feature genes. Notably, these feature genes may be closely linked to mitochondrial-related biological functions. In conclusion, our findings enhance the understanding of the pathological mechanisms underlying PE and open innovative avenues for the diagnosis and treatment of PE.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":" ","pages":"1-19"},"PeriodicalIF":1.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging machine learning and bioinformatics to identify diagnostic biomarkers connected to hypoxia-related genes in preeclampsia.\",\"authors\":\"Jianfang Cao, Chaofen Zhou, Heshui Mao, Xia Zhang\",\"doi\":\"10.1080/10255842.2025.2484572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>PE is a serious form of pregnancy-related hypertension. Hypoxia can induce cellular dysfunction, adversely affecting both the infant and the mother. This study aims to investigate the relationship between HRGs and the diagnosis of PE, seeking to enhance our understanding of potential molecular mechanisms and offer new perspectives for the detection and treatment of the condition. A WGCNA network was established to identify key genes significantly associated with traits of PE. LASSO, SVM-RFE, and RF were utilized to identify feature genes. Calibration curves and DCA were employed to assess the diagnostic performance of the comprehensive nomogram. Consensus clustering was applied to identify subtypes of PE. GSEA and the construction of a ceRNA network were used to explore the potential biological functions and regulatory mechanisms of the identified feature genes. Furthermore, ssGSEA was conducted to investigate the immune landscape associated with PE. We successfully identified three potential diagnostic biomarkers for PE: P4HA1, NDRG1, and BHLHE40. Furthermore, the nomogram exhibited strong diagnostic performance. In patients with PE, the abundance of pro-inflammatory immune cells was significantly elevated, reflecting characteristics of high infiltration. The levels of immune cells infiltration were significantly correlated with the expression of the identified feature genes. Notably, these feature genes may be closely linked to mitochondrial-related biological functions. In conclusion, our findings enhance the understanding of the pathological mechanisms underlying PE and open innovative avenues for the diagnosis and treatment of PE.</p>\",\"PeriodicalId\":50640,\"journal\":{\"name\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"volume\":\" \",\"pages\":\"1-19\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Methods in Biomechanics and Biomedical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10255842.2025.2484572\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2025.2484572","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

PE是妊娠高血压的一种严重形式。缺氧可引起细胞功能障碍,对婴儿和母亲都有不利影响。本研究旨在探讨hrg与PE诊断之间的关系,以期加深我们对PE潜在分子机制的理解,并为PE的检测和治疗提供新的视角。建立WGCNA网络,鉴定与PE性状显著相关的关键基因。利用LASSO、SVM-RFE和RF识别特征基因。采用校正曲线和DCA评价综合模态图的诊断性能。采用一致聚类法识别PE亚型。利用GSEA和构建ceRNA网络来探索鉴定的特征基因的潜在生物学功能和调控机制。此外,通过ssGSEA研究与PE相关的免疫景观。我们成功鉴定了三种PE的潜在诊断生物标志物:P4HA1、NDRG1和BHLHE40。此外,图显示了较强的诊断性能。在PE患者中,促炎免疫细胞的丰度显著升高,反映出高浸润的特征。免疫细胞浸润水平与所鉴定的特征基因表达显著相关。值得注意的是,这些特征基因可能与线粒体相关的生物学功能密切相关。总之,我们的研究结果增强了对PE病理机制的理解,并为PE的诊断和治疗开辟了创新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging machine learning and bioinformatics to identify diagnostic biomarkers connected to hypoxia-related genes in preeclampsia.

PE is a serious form of pregnancy-related hypertension. Hypoxia can induce cellular dysfunction, adversely affecting both the infant and the mother. This study aims to investigate the relationship between HRGs and the diagnosis of PE, seeking to enhance our understanding of potential molecular mechanisms and offer new perspectives for the detection and treatment of the condition. A WGCNA network was established to identify key genes significantly associated with traits of PE. LASSO, SVM-RFE, and RF were utilized to identify feature genes. Calibration curves and DCA were employed to assess the diagnostic performance of the comprehensive nomogram. Consensus clustering was applied to identify subtypes of PE. GSEA and the construction of a ceRNA network were used to explore the potential biological functions and regulatory mechanisms of the identified feature genes. Furthermore, ssGSEA was conducted to investigate the immune landscape associated with PE. We successfully identified three potential diagnostic biomarkers for PE: P4HA1, NDRG1, and BHLHE40. Furthermore, the nomogram exhibited strong diagnostic performance. In patients with PE, the abundance of pro-inflammatory immune cells was significantly elevated, reflecting characteristics of high infiltration. The levels of immune cells infiltration were significantly correlated with the expression of the identified feature genes. Notably, these feature genes may be closely linked to mitochondrial-related biological functions. In conclusion, our findings enhance the understanding of the pathological mechanisms underlying PE and open innovative avenues for the diagnosis and treatment of PE.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
6.20%
发文量
179
审稿时长
4-8 weeks
期刊介绍: The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信