Jasdeep Singh, Prashant Pradhan, Arti Kataria, Sanjeev Sinha, Nasreen Z Ehtesham, Peter N Monk, Seyed E Hasnain
{"title":"多重耐药结核分枝杆菌中假定的液-液相分离蛋白的保存:在宿主-病原体相互作用中的作用?","authors":"Jasdeep Singh, Prashant Pradhan, Arti Kataria, Sanjeev Sinha, Nasreen Z Ehtesham, Peter N Monk, Seyed E Hasnain","doi":"10.1021/acsinfecdis.4c00722","DOIUrl":null,"url":null,"abstract":"<p><p>We observed a high proportion of proteins in pathogenic <i>Mycobacterium</i> species that can potentially undergo liquid-liquid phase separation (LLPS) mediated biomolecular condensate formation, compared to nonpathogenic species. These proteins mainly include the PE-PPE and PE-PGRS families of proteins that have nucleic acid and protein-protein binding functions, typical of LLPS proteins. We also mapped identified LLPS proteins in <i>M. tuberculosis</i> (M.tb) drug-resistant databases PubMLST and TBProfiler, based upon the WHO 2023 catalogue of resistance-associated mutations. High sequence conservation of LLPS-associated proteins in various multiple drug-resistant M.tb isolates points to their potentially important role in virulence and host-pathogen interactions during pathogenic evolution. This analysis provides a perspective on the role of protein phase separation in the evaluation of M.tb pathogenesis and offers avenues for future research aimed at developing innovative strategies to combat M.tb infection.</p>","PeriodicalId":17,"journal":{"name":"ACS Infectious Diseases","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conservation of Putative Liquid-Liquid Phase Separating Proteins in Multiple Drug-Resistant <i>Mycobacterium tuberculosis</i>: Role in Host-Pathogen Interactions?\",\"authors\":\"Jasdeep Singh, Prashant Pradhan, Arti Kataria, Sanjeev Sinha, Nasreen Z Ehtesham, Peter N Monk, Seyed E Hasnain\",\"doi\":\"10.1021/acsinfecdis.4c00722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We observed a high proportion of proteins in pathogenic <i>Mycobacterium</i> species that can potentially undergo liquid-liquid phase separation (LLPS) mediated biomolecular condensate formation, compared to nonpathogenic species. These proteins mainly include the PE-PPE and PE-PGRS families of proteins that have nucleic acid and protein-protein binding functions, typical of LLPS proteins. We also mapped identified LLPS proteins in <i>M. tuberculosis</i> (M.tb) drug-resistant databases PubMLST and TBProfiler, based upon the WHO 2023 catalogue of resistance-associated mutations. High sequence conservation of LLPS-associated proteins in various multiple drug-resistant M.tb isolates points to their potentially important role in virulence and host-pathogen interactions during pathogenic evolution. This analysis provides a perspective on the role of protein phase separation in the evaluation of M.tb pathogenesis and offers avenues for future research aimed at developing innovative strategies to combat M.tb infection.</p>\",\"PeriodicalId\":17,\"journal\":{\"name\":\"ACS Infectious Diseases\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Infectious Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acsinfecdis.4c00722\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Infectious Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acsinfecdis.4c00722","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Conservation of Putative Liquid-Liquid Phase Separating Proteins in Multiple Drug-Resistant Mycobacterium tuberculosis: Role in Host-Pathogen Interactions?
We observed a high proportion of proteins in pathogenic Mycobacterium species that can potentially undergo liquid-liquid phase separation (LLPS) mediated biomolecular condensate formation, compared to nonpathogenic species. These proteins mainly include the PE-PPE and PE-PGRS families of proteins that have nucleic acid and protein-protein binding functions, typical of LLPS proteins. We also mapped identified LLPS proteins in M. tuberculosis (M.tb) drug-resistant databases PubMLST and TBProfiler, based upon the WHO 2023 catalogue of resistance-associated mutations. High sequence conservation of LLPS-associated proteins in various multiple drug-resistant M.tb isolates points to their potentially important role in virulence and host-pathogen interactions during pathogenic evolution. This analysis provides a perspective on the role of protein phase separation in the evaluation of M.tb pathogenesis and offers avenues for future research aimed at developing innovative strategies to combat M.tb infection.
期刊介绍:
ACS Infectious Diseases will be the first journal to highlight chemistry and its role in this multidisciplinary and collaborative research area. The journal will cover a diverse array of topics including, but not limited to:
* Discovery and development of new antimicrobial agents — identified through target- or phenotypic-based approaches as well as compounds that induce synergy with antimicrobials.
* Characterization and validation of drug target or pathways — use of single target and genome-wide knockdown and knockouts, biochemical studies, structural biology, new technologies to facilitate characterization and prioritization of potential drug targets.
* Mechanism of drug resistance — fundamental research that advances our understanding of resistance; strategies to prevent resistance.
* Mechanisms of action — use of genetic, metabolomic, and activity- and affinity-based protein profiling to elucidate the mechanism of action of clinical and experimental antimicrobial agents.
* Host-pathogen interactions — tools for studying host-pathogen interactions, cellular biochemistry of hosts and pathogens, and molecular interactions of pathogens with host microbiota.
* Small molecule vaccine adjuvants for infectious disease.
* Viral and bacterial biochemistry and molecular biology.