铁基超导体中20 MA/cm2超电流密度的工程短节柱状缺陷

IF 10 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junsong Liao , Chiheng Dong , Ningning Liu , Dongliang Gong , Xianping Zhang , Dongliang Wang , Yanwei Ma
{"title":"铁基超导体中20 MA/cm2超电流密度的工程短节柱状缺陷","authors":"Junsong Liao ,&nbsp;Chiheng Dong ,&nbsp;Ningning Liu ,&nbsp;Dongliang Gong ,&nbsp;Xianping Zhang ,&nbsp;Dongliang Wang ,&nbsp;Yanwei Ma","doi":"10.1016/j.mtphys.2025.101718","DOIUrl":null,"url":null,"abstract":"<div><div>Realizing ultra-high supercurrent density in iron-based superconductors (IBS) is a crucial step toward practical applications at high magnetic fields. However, engineering the most effective pinning structure to maximize the critical current density (<em>J</em><sub>c</sub>) remains an open challenge. In this work, Ba<sub>1-x</sub>K<sub>x</sub>Fe<sub>2</sub>As<sub>2</sub> single crystals were irradiated by Xe ions within seconds, achieving a high <em>J</em><sub>c</sub> of 20 MA/cm<sup>2</sup> at 2 K. Remarkably, the <em>J</em><sub>c</sub> remains 8.7 MA/cm<sup>2</sup> at 5 K and 4 T, which surpasses previously reported values of IBS at high-fields. This enhancement is attributed to the replacement of intrinsic weak collective pinning by strong pinning of segmented discontinuous columnar defects. The advantageous pinning landscape minimizes superconductivity degradation and efficiently suppresses the motion of vortex kinks across a wide temperature range. The <em>J</em><sub>c</sub> (25 K, 5 T) is enhanced to 1.2 MA/cm<sup>2</sup>, which is nearly 180 times that of the unirradiated sample. These findings pave the way for further <em>J</em><sub>c</sub> enhancement by optimizing the defect geometry and density, providing valuable insights for the development of high-performance superconducting materials.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"54 ","pages":"Article 101718"},"PeriodicalIF":10.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering short-segmented columnar defects in seconds for 20 MA/cm2 supercurrent density in iron-based superconductors\",\"authors\":\"Junsong Liao ,&nbsp;Chiheng Dong ,&nbsp;Ningning Liu ,&nbsp;Dongliang Gong ,&nbsp;Xianping Zhang ,&nbsp;Dongliang Wang ,&nbsp;Yanwei Ma\",\"doi\":\"10.1016/j.mtphys.2025.101718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Realizing ultra-high supercurrent density in iron-based superconductors (IBS) is a crucial step toward practical applications at high magnetic fields. However, engineering the most effective pinning structure to maximize the critical current density (<em>J</em><sub>c</sub>) remains an open challenge. In this work, Ba<sub>1-x</sub>K<sub>x</sub>Fe<sub>2</sub>As<sub>2</sub> single crystals were irradiated by Xe ions within seconds, achieving a high <em>J</em><sub>c</sub> of 20 MA/cm<sup>2</sup> at 2 K. Remarkably, the <em>J</em><sub>c</sub> remains 8.7 MA/cm<sup>2</sup> at 5 K and 4 T, which surpasses previously reported values of IBS at high-fields. This enhancement is attributed to the replacement of intrinsic weak collective pinning by strong pinning of segmented discontinuous columnar defects. The advantageous pinning landscape minimizes superconductivity degradation and efficiently suppresses the motion of vortex kinks across a wide temperature range. The <em>J</em><sub>c</sub> (25 K, 5 T) is enhanced to 1.2 MA/cm<sup>2</sup>, which is nearly 180 times that of the unirradiated sample. These findings pave the way for further <em>J</em><sub>c</sub> enhancement by optimizing the defect geometry and density, providing valuable insights for the development of high-performance superconducting materials.</div></div>\",\"PeriodicalId\":18253,\"journal\":{\"name\":\"Materials Today Physics\",\"volume\":\"54 \",\"pages\":\"Article 101718\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Today Physics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542529325000744\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529325000744","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在铁基超导体(IBS)中实现超高的超电流密度是实现高磁场实际应用的关键一步。然而,设计最有效的钉接结构以最大化临界电流密度(Jc)仍然是一个悬而未决的挑战。在这项工作中,Ba1-xKxFe2As2单晶被Xe离子在几秒钟内照射,在2k下获得了20 MA/cm2的高Jc。值得注意的是,在5k和4t下,Jc仍然保持在8.7 MA/cm2,这超过了先前报道的高场IBS值。这种增强归因于固有的弱集体钉钉被分段不连续柱状缺陷的强钉钉所取代。有利的钉住环境最大限度地减少了超导性的退化,并有效地抑制了涡旋扭结在宽温度范围内的运动。Jc(25 K, 5 T)提高到1.2 MA/cm2,是未辐照样品的近180倍。这些发现通过优化缺陷几何形状和密度,为进一步增强Jc铺平了道路,为高性能超导材料的发展提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Engineering short-segmented columnar defects in seconds for 20 MA/cm2 supercurrent density in iron-based superconductors
Realizing ultra-high supercurrent density in iron-based superconductors (IBS) is a crucial step toward practical applications at high magnetic fields. However, engineering the most effective pinning structure to maximize the critical current density (Jc) remains an open challenge. In this work, Ba1-xKxFe2As2 single crystals were irradiated by Xe ions within seconds, achieving a high Jc of 20 MA/cm2 at 2 K. Remarkably, the Jc remains 8.7 MA/cm2 at 5 K and 4 T, which surpasses previously reported values of IBS at high-fields. This enhancement is attributed to the replacement of intrinsic weak collective pinning by strong pinning of segmented discontinuous columnar defects. The advantageous pinning landscape minimizes superconductivity degradation and efficiently suppresses the motion of vortex kinks across a wide temperature range. The Jc (25 K, 5 T) is enhanced to 1.2 MA/cm2, which is nearly 180 times that of the unirradiated sample. These findings pave the way for further Jc enhancement by optimizing the defect geometry and density, providing valuable insights for the development of high-performance superconducting materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Today Physics
Materials Today Physics Materials Science-General Materials Science
CiteScore
14.00
自引率
7.80%
发文量
284
审稿时长
15 days
期刊介绍: Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信