{"title":"牛蒡子苷通过激活Nrf2/HO-1信号通路抑制高血糖诱导的氧化应激治疗2型糖尿病骨质疏松","authors":"Weipeng Sun, Minying Li, Qing Lin, Xueshan Jin, Biyi Zhao, Ziwei Jiang, Ronghua Zhang, Xiaoyun Li","doi":"10.1002/mnfr.70053","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Arctiin (ARC), a primary component of burdock (<i>Arctium lappa</i> L.), is widely recognized as a traditional herb and nutritional supplement in Asia. This study set out to explore its potential impact on type 2 diabetic osteoporosis (T2DOP). MC3T3-E1 cells were exposed to a high-glucose environment to simulate diabetic conditions. Treatment with ARC increased the expression of crucial osteogenic transcription factor genes, such as RUNX2, Osterix, and COL1A1. Moreover, ARC mitigated the production of ROS induced by high glucose levels. For in vivo experimentation, db/db mice were used as models for T2DOP. ARC supplementation decreased bone loss and improved bone structural integrity. Collectively, our findings indicate that ARC holds promise as a nutritional intervention for the treatment of T2DOP. By activating the Nrf2/HO-1 signaling pathway, ARC could help counteract oxidative stress and impaired bone differentiation associated with diabetes, thus offering a potential dietary strategy to support bone health. Incorporating ARC-containing foods or supplements into the diet could be a beneficial approach to enhance overall bone quality and potentially reduce the risk of fractures and other bone-related problems in patients with diabetes, highlighting the importance of considering natural compounds for the nutritional management of chronic diseases.</p>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"69 10","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Arctiin Inhibits Hyperglycemia-Induced Oxidative Stress by Activating the Nrf2/HO-1 Signaling Pathway to Treat Type 2 Diabetic Osteoporosis\",\"authors\":\"Weipeng Sun, Minying Li, Qing Lin, Xueshan Jin, Biyi Zhao, Ziwei Jiang, Ronghua Zhang, Xiaoyun Li\",\"doi\":\"10.1002/mnfr.70053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Arctiin (ARC), a primary component of burdock (<i>Arctium lappa</i> L.), is widely recognized as a traditional herb and nutritional supplement in Asia. This study set out to explore its potential impact on type 2 diabetic osteoporosis (T2DOP). MC3T3-E1 cells were exposed to a high-glucose environment to simulate diabetic conditions. Treatment with ARC increased the expression of crucial osteogenic transcription factor genes, such as RUNX2, Osterix, and COL1A1. Moreover, ARC mitigated the production of ROS induced by high glucose levels. For in vivo experimentation, db/db mice were used as models for T2DOP. ARC supplementation decreased bone loss and improved bone structural integrity. Collectively, our findings indicate that ARC holds promise as a nutritional intervention for the treatment of T2DOP. By activating the Nrf2/HO-1 signaling pathway, ARC could help counteract oxidative stress and impaired bone differentiation associated with diabetes, thus offering a potential dietary strategy to support bone health. Incorporating ARC-containing foods or supplements into the diet could be a beneficial approach to enhance overall bone quality and potentially reduce the risk of fractures and other bone-related problems in patients with diabetes, highlighting the importance of considering natural compounds for the nutritional management of chronic diseases.</p>\\n </div>\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"69 10\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.70053\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.70053","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Arctiin Inhibits Hyperglycemia-Induced Oxidative Stress by Activating the Nrf2/HO-1 Signaling Pathway to Treat Type 2 Diabetic Osteoporosis
Arctiin (ARC), a primary component of burdock (Arctium lappa L.), is widely recognized as a traditional herb and nutritional supplement in Asia. This study set out to explore its potential impact on type 2 diabetic osteoporosis (T2DOP). MC3T3-E1 cells were exposed to a high-glucose environment to simulate diabetic conditions. Treatment with ARC increased the expression of crucial osteogenic transcription factor genes, such as RUNX2, Osterix, and COL1A1. Moreover, ARC mitigated the production of ROS induced by high glucose levels. For in vivo experimentation, db/db mice were used as models for T2DOP. ARC supplementation decreased bone loss and improved bone structural integrity. Collectively, our findings indicate that ARC holds promise as a nutritional intervention for the treatment of T2DOP. By activating the Nrf2/HO-1 signaling pathway, ARC could help counteract oxidative stress and impaired bone differentiation associated with diabetes, thus offering a potential dietary strategy to support bone health. Incorporating ARC-containing foods or supplements into the diet could be a beneficial approach to enhance overall bone quality and potentially reduce the risk of fractures and other bone-related problems in patients with diabetes, highlighting the importance of considering natural compounds for the nutritional management of chronic diseases.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.