Jae Seung Woo, Chae Lin Jung, Jin Ho Chang, Minjeong Ryu, Woo Young Choi
{"title":"基于局部极化开关的铁电隧道场效应管大规模神经网络双阵列操作。板牙。4/2025)","authors":"Jae Seung Woo, Chae Lin Jung, Jin Ho Chang, Minjeong Ryu, Woo Young Choi","doi":"10.1002/aelm.202570011","DOIUrl":null,"url":null,"abstract":"<p><b>Dual-Layer-Per-Array Operations</b></p><p>In article number 2400606, Woo Young Choi and co-workers propose and implement a novel dual-layer-per-array operation in a FeTFET array for large-scale neural network implementations. Owing to independently controllable two current regions, dual-layer vector-matrix multiplication operations can be performed within a single FeTFET synapse array, enabling identical neural network implementation in half the area of the conventional neuromorphic hardware.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202570011","citationCount":"0","resultStr":"{\"title\":\"Dual-Layer-Per-Array Operation Using Local Polarization Switching of Ferroelectric Tunnel FETs for Massive Neural Networks (Adv. Electron. Mater. 4/2025)\",\"authors\":\"Jae Seung Woo, Chae Lin Jung, Jin Ho Chang, Minjeong Ryu, Woo Young Choi\",\"doi\":\"10.1002/aelm.202570011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Dual-Layer-Per-Array Operations</b></p><p>In article number 2400606, Woo Young Choi and co-workers propose and implement a novel dual-layer-per-array operation in a FeTFET array for large-scale neural network implementations. Owing to independently controllable two current regions, dual-layer vector-matrix multiplication operations can be performed within a single FeTFET synapse array, enabling identical neural network implementation in half the area of the conventional neuromorphic hardware.\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"11 4\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202570011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202570011\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aelm.202570011","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在第2400606号文章中,Woo Young Choi及其同事提出并实现了用于大规模神经网络实现的FeTFET阵列中的一种新颖的每阵列双层操作。由于独立可控的两个电流区域,双层向量矩阵乘法运算可以在单个FeTFET突触阵列内进行,使得在传统神经形态硬件的一半面积内实现相同的神经网络。
Dual-Layer-Per-Array Operation Using Local Polarization Switching of Ferroelectric Tunnel FETs for Massive Neural Networks (Adv. Electron. Mater. 4/2025)
Dual-Layer-Per-Array Operations
In article number 2400606, Woo Young Choi and co-workers propose and implement a novel dual-layer-per-array operation in a FeTFET array for large-scale neural network implementations. Owing to independently controllable two current regions, dual-layer vector-matrix multiplication operations can be performed within a single FeTFET synapse array, enabling identical neural network implementation in half the area of the conventional neuromorphic hardware.
期刊介绍:
Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.