提高Yb0.4Co4Sb12†热电性能的双掺杂策略

IF 5.1 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Akshara Dadhich, Bhuvanesh Srinivasan, Suresh Perumal, M. S. Ramachandra Rao and Kanikrishnan Sethupathi
{"title":"提高Yb0.4Co4Sb12†热电性能的双掺杂策略","authors":"Akshara Dadhich, Bhuvanesh Srinivasan, Suresh Perumal, M. S. Ramachandra Rao and Kanikrishnan Sethupathi","doi":"10.1039/D4TC05348F","DOIUrl":null,"url":null,"abstract":"<p >Yb<small><sub>0.4</sub></small>Co<small><sub>4</sub></small>Sb<small><sub>12</sub></small> compound is extensively studied for its superior thermoelectric properties, which are primarily attributed to the phonon-glass-electron-crystal (PGEC) approach upon Yb occupying the void-site in the unit cell. Herein, thermoelectric performances of co-doped Yb<small><sub>0.4</sub></small>Co<small><sub>3.96−<em>x</em></sub></small>Mo<small><sub><em>x</em></sub></small>Ti<small><sub>0.04</sub></small>Sb<small><sub>12</sub></small> (<em>x</em> = 0, 0.02, 0.04, and 0.08) samples synthesized <em>via</em> a solid-state vacuum-encapsulated melt-quench-annealing method were measured in the temperature range of 300 K to 715 K. The framework of Mo<small><sup>4+</sup></small> substituted at the Co<small><sup>2+</sup></small>/Co<small><sup>3+</sup></small> site acted as a donor-like impurity, thereby significantly increasing the carrier concentration to 2.88 × 10<small><sup>20</sup></small> cm<small><sup>−3</sup></small> for Yb<small><sub>0.4</sub></small>Co<small><sub>3.92</sub></small>Mo<small><sub>0.04</sub></small>Ti<small><sub>0.04</sub></small>Sb<small><sub>12</sub></small> at 300 K. Meanwhile, the electrical conductivity at 300 K approached a value of 756.73 S cm<small><sup>−1</sup></small> and further increased to 820 S cm<small><sup>−1</sup></small> at 711 K. The intensified point defect scattering from the dual doping strategy and enhanced grain boundary scattering simultaneously turned down the thermally active phonons to a suppressed <em>κ</em><small><sub>total</sub></small> of ∼2.11 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> at 623 K, leading to an enhanced <em>zT</em> of ∼0.92 for Yb<small><sub>0.4</sub></small>Co<small><sub>3.92</sub></small>Mo<small><sub>0.04</sub></small>Ti<small><sub>0.04</sub></small>Sb<small><sub>12</sub></small>, making it a promising candidate for intermediate temperature energy conversion applications.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":" 14","pages":" 7368-7379"},"PeriodicalIF":5.1000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual doping strategy for enhancing the thermoelectric performance of Yb0.4Co4Sb12†\",\"authors\":\"Akshara Dadhich, Bhuvanesh Srinivasan, Suresh Perumal, M. S. Ramachandra Rao and Kanikrishnan Sethupathi\",\"doi\":\"10.1039/D4TC05348F\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Yb<small><sub>0.4</sub></small>Co<small><sub>4</sub></small>Sb<small><sub>12</sub></small> compound is extensively studied for its superior thermoelectric properties, which are primarily attributed to the phonon-glass-electron-crystal (PGEC) approach upon Yb occupying the void-site in the unit cell. Herein, thermoelectric performances of co-doped Yb<small><sub>0.4</sub></small>Co<small><sub>3.96−<em>x</em></sub></small>Mo<small><sub><em>x</em></sub></small>Ti<small><sub>0.04</sub></small>Sb<small><sub>12</sub></small> (<em>x</em> = 0, 0.02, 0.04, and 0.08) samples synthesized <em>via</em> a solid-state vacuum-encapsulated melt-quench-annealing method were measured in the temperature range of 300 K to 715 K. The framework of Mo<small><sup>4+</sup></small> substituted at the Co<small><sup>2+</sup></small>/Co<small><sup>3+</sup></small> site acted as a donor-like impurity, thereby significantly increasing the carrier concentration to 2.88 × 10<small><sup>20</sup></small> cm<small><sup>−3</sup></small> for Yb<small><sub>0.4</sub></small>Co<small><sub>3.92</sub></small>Mo<small><sub>0.04</sub></small>Ti<small><sub>0.04</sub></small>Sb<small><sub>12</sub></small> at 300 K. Meanwhile, the electrical conductivity at 300 K approached a value of 756.73 S cm<small><sup>−1</sup></small> and further increased to 820 S cm<small><sup>−1</sup></small> at 711 K. The intensified point defect scattering from the dual doping strategy and enhanced grain boundary scattering simultaneously turned down the thermally active phonons to a suppressed <em>κ</em><small><sub>total</sub></small> of ∼2.11 W m<small><sup>−1</sup></small> K<small><sup>−1</sup></small> at 623 K, leading to an enhanced <em>zT</em> of ∼0.92 for Yb<small><sub>0.4</sub></small>Co<small><sub>3.92</sub></small>Mo<small><sub>0.04</sub></small>Ti<small><sub>0.04</sub></small>Sb<small><sub>12</sub></small>, making it a promising candidate for intermediate temperature energy conversion applications.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":\" 14\",\"pages\":\" 7368-7379\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05348f\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tc/d4tc05348f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Yb0.4Co4Sb12化合物因其优异的热电性能而被广泛研究,这主要归因于Yb占据单元胞中的空隙位置时声子-玻璃电子晶体(PGEC)方法。在300 ~ 715 K的温度范围内,采用固态真空封装熔融淬火退火法制备了共掺杂Yb0.4Co3.96−xMoxTi0.04Sb12 (x = 0、0.02、0.04和0.08)样品,测量了样品的热电性能。在Co2+/Co3+位置上取代的Mo4+骨架充当了类似供体的杂质,从而显著提高了Yb0.4Co3.92Mo0.04Ti0.04Sb12在300 K时的载流子浓度,达到2.88 × 1020 cm−3。同时,在300 K时电导率接近756.73 S cm−1,在711 K时电导率进一步增加到820 S cm−1。双掺杂策略引起的点缺陷散射增强和晶界散射增强同时使热活性声子在623 K时的κtotal被抑制为~ 2.11 W m−1 K−1,导致Yb0.4Co3.92Mo0.04Ti0.04Sb12的zT增强为~ 0.92,使其成为中温能量转换应用的有希望的候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dual doping strategy for enhancing the thermoelectric performance of Yb0.4Co4Sb12†

Dual doping strategy for enhancing the thermoelectric performance of Yb0.4Co4Sb12†

Yb0.4Co4Sb12 compound is extensively studied for its superior thermoelectric properties, which are primarily attributed to the phonon-glass-electron-crystal (PGEC) approach upon Yb occupying the void-site in the unit cell. Herein, thermoelectric performances of co-doped Yb0.4Co3.96−xMoxTi0.04Sb12 (x = 0, 0.02, 0.04, and 0.08) samples synthesized via a solid-state vacuum-encapsulated melt-quench-annealing method were measured in the temperature range of 300 K to 715 K. The framework of Mo4+ substituted at the Co2+/Co3+ site acted as a donor-like impurity, thereby significantly increasing the carrier concentration to 2.88 × 1020 cm−3 for Yb0.4Co3.92Mo0.04Ti0.04Sb12 at 300 K. Meanwhile, the electrical conductivity at 300 K approached a value of 756.73 S cm−1 and further increased to 820 S cm−1 at 711 K. The intensified point defect scattering from the dual doping strategy and enhanced grain boundary scattering simultaneously turned down the thermally active phonons to a suppressed κtotal of ∼2.11 W m−1 K−1 at 623 K, leading to an enhanced zT of ∼0.92 for Yb0.4Co3.92Mo0.04Ti0.04Sb12, making it a promising candidate for intermediate temperature energy conversion applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信