构建Bi/ bibr - bi4o5i2异质结增强光吸收和电荷分离,高效降解双酚A

IF 4.2 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Shuang Fu , Jinyuan Zhang , Junhao Ma , Qincan Ma , Xianzhong Lin , Yueli Zhang
{"title":"构建Bi/ bibr - bi4o5i2异质结增强光吸收和电荷分离,高效降解双酚A","authors":"Shuang Fu ,&nbsp;Jinyuan Zhang ,&nbsp;Junhao Ma ,&nbsp;Qincan Ma ,&nbsp;Xianzhong Lin ,&nbsp;Yueli Zhang","doi":"10.1016/j.mssp.2025.109543","DOIUrl":null,"url":null,"abstract":"<div><div>How to realize the efficient utilization of the solar energy and the separation capacity of photo-generated charges is an instant problem in the field of photocatalytic degradation utilizing bismuth oxyhalide. Here, Bi/BiOBr-Bi<sub>4</sub>O<sub>5</sub>I<sub>2</sub> (BOB-BI) heterojunctions have been successfully designed and constructed. The optimized 1BOB-1BI heterojunction achieves a 100 % degradation rate of BPA under simulated solar light illumination (25 min). This excellent photocatalytic ability is ascribable to the synergistic effect of Bi particles and the formation of heterojunction. The significantly improved light absorption of the photocatalyst was benefited by the localized surface plasmon resonance (LSPR) effect of Bi particles. The construction of the heterojunction effectively reduces the interfacial transfer resistance, enhancing the separation capacity of photo-generated charges. This research provides a deep insight to the construction of effective bismuth-based heterojunction photocatalysts.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"194 ","pages":"Article 109543"},"PeriodicalIF":4.2000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancement of light absorption and charge separation through construction of Bi/BiOBr-Bi4O5I2 heterojunction for efficient degradation of bisphenol A\",\"authors\":\"Shuang Fu ,&nbsp;Jinyuan Zhang ,&nbsp;Junhao Ma ,&nbsp;Qincan Ma ,&nbsp;Xianzhong Lin ,&nbsp;Yueli Zhang\",\"doi\":\"10.1016/j.mssp.2025.109543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>How to realize the efficient utilization of the solar energy and the separation capacity of photo-generated charges is an instant problem in the field of photocatalytic degradation utilizing bismuth oxyhalide. Here, Bi/BiOBr-Bi<sub>4</sub>O<sub>5</sub>I<sub>2</sub> (BOB-BI) heterojunctions have been successfully designed and constructed. The optimized 1BOB-1BI heterojunction achieves a 100 % degradation rate of BPA under simulated solar light illumination (25 min). This excellent photocatalytic ability is ascribable to the synergistic effect of Bi particles and the formation of heterojunction. The significantly improved light absorption of the photocatalyst was benefited by the localized surface plasmon resonance (LSPR) effect of Bi particles. The construction of the heterojunction effectively reduces the interfacial transfer resistance, enhancing the separation capacity of photo-generated charges. This research provides a deep insight to the construction of effective bismuth-based heterojunction photocatalysts.</div></div>\",\"PeriodicalId\":18240,\"journal\":{\"name\":\"Materials Science in Semiconductor Processing\",\"volume\":\"194 \",\"pages\":\"Article 109543\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science in Semiconductor Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S136980012500280X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S136980012500280X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

如何实现太阳能的高效利用和光生电荷的分离能力,是利用氧化卤化铋光催化降解领域亟待解决的问题。本文成功地设计和构建了Bi/ bibr - bi4o5i2 (BOB-BI)异质结。优化后的1BOB-1BI异质结在模拟太阳光照(25 min)下实现了100%的BPA降解率。这种优异的光催化能力归因于Bi粒子的协同作用和异质结的形成。铋粒子的局部表面等离子体共振(LSPR)效应显著改善了光催化剂的光吸收。异质结的构建有效地降低了界面转移阻力,增强了光生电荷的分离能力。本研究为构建有效的铋基异质结光催化剂提供了深入的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhancement of light absorption and charge separation through construction of Bi/BiOBr-Bi4O5I2 heterojunction for efficient degradation of bisphenol A

Enhancement of light absorption and charge separation through construction of Bi/BiOBr-Bi4O5I2 heterojunction for efficient degradation of bisphenol A
How to realize the efficient utilization of the solar energy and the separation capacity of photo-generated charges is an instant problem in the field of photocatalytic degradation utilizing bismuth oxyhalide. Here, Bi/BiOBr-Bi4O5I2 (BOB-BI) heterojunctions have been successfully designed and constructed. The optimized 1BOB-1BI heterojunction achieves a 100 % degradation rate of BPA under simulated solar light illumination (25 min). This excellent photocatalytic ability is ascribable to the synergistic effect of Bi particles and the formation of heterojunction. The significantly improved light absorption of the photocatalyst was benefited by the localized surface plasmon resonance (LSPR) effect of Bi particles. The construction of the heterojunction effectively reduces the interfacial transfer resistance, enhancing the separation capacity of photo-generated charges. This research provides a deep insight to the construction of effective bismuth-based heterojunction photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信