Connor D. Flynn, Zhenwei Wu, Amy Bantle, Scott E. Isaacson, Dingran Chang, Alam Mahmud, Hanie Yousefi, Jagotamoy Das, Shana O. Kelley
{"title":"Nanobody Receptors Enable High-Sensitivity Monitoring of IL-6 Using Molecular Pendulum Bioanalysis","authors":"Connor D. Flynn, Zhenwei Wu, Amy Bantle, Scott E. Isaacson, Dingran Chang, Alam Mahmud, Hanie Yousefi, Jagotamoy Das, Shana O. Kelley","doi":"10.1021/acs.analchem.4c06305","DOIUrl":null,"url":null,"abstract":"The development of biomolecular sensing technologies with high sensitivity and specificity remains an important goal in modern analytical science. Molecular pendulum sensing has emerged as a new reagentless method capable of detecting a wide array of biomolecules directly in biological fluids. This sensing approach relies heavily on the modulation of hydrodynamic drag of molecular probes through solution, such that alterations in hydrodynamic diameter can transduce biomolecular interactions. Here, we explore the use of nanobodies as an alternative receptor in pendulum-based systems due to their small size and robust affinities. We compare the performance of nanobodies with that of aptamers and antibodies integrated into the molecular pendulum system by targeting the inflammatory indicator interleukin-6 (IL-6). Nanobody molecular pendulums demonstrate enhanced sensor response and sensitivity compared to those of the other receptors, enabling fine control over detection in the low physiological range of IL-6. In addition, we demonstrate the ability of nanobody sensors to function in complex biological matrices and at physiological temperature.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"38 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06305","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Nanobody Receptors Enable High-Sensitivity Monitoring of IL-6 Using Molecular Pendulum Bioanalysis
The development of biomolecular sensing technologies with high sensitivity and specificity remains an important goal in modern analytical science. Molecular pendulum sensing has emerged as a new reagentless method capable of detecting a wide array of biomolecules directly in biological fluids. This sensing approach relies heavily on the modulation of hydrodynamic drag of molecular probes through solution, such that alterations in hydrodynamic diameter can transduce biomolecular interactions. Here, we explore the use of nanobodies as an alternative receptor in pendulum-based systems due to their small size and robust affinities. We compare the performance of nanobodies with that of aptamers and antibodies integrated into the molecular pendulum system by targeting the inflammatory indicator interleukin-6 (IL-6). Nanobody molecular pendulums demonstrate enhanced sensor response and sensitivity compared to those of the other receptors, enabling fine control over detection in the low physiological range of IL-6. In addition, we demonstrate the ability of nanobody sensors to function in complex biological matrices and at physiological temperature.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.