Chengjie Huang, Tianbao Ye, Xiuyuan Wang, Ke Li, Yiyang Li, Lai Jiang, Xianting Ding
{"title":"具有金属和荧光双重特性的发光金属有机框架探针,用于质控细胞测量和成像","authors":"Chengjie Huang, Tianbao Ye, Xiuyuan Wang, Ke Li, Yiyang Li, Lai Jiang, Xianting Ding","doi":"10.1021/acs.analchem.4c07055","DOIUrl":null,"url":null,"abstract":"Mass cytometry (CyTOF) and imaging mass cytometry (IMC), as cutting-edge technologies in single-cell analysis, are capable of detecting more than 40 biomarkers simultaneously on a single cell. However, their sensitivity and multiparameter detection capabilities have been long constrained by the development of metal labeling materials. Meanwhile, as an imaging technique, IMC has suffered from a rather slow data acquisition rate. Here, we present a luminescent PCN-224-OH material that exhibits both fluorescent and mass dual-functionality and is enriched with Zr–OH<sup>–</sup>/H<sub>2</sub>O active sites. Without the additional need for complex postmodification or chemical coupling reactions, PCN-224-OH can be directly functionalized with antibodies/aptamers and poly(ethylene glycol) (PEG), resulting in the production of PCN-224-Ab-PEG or PCN-224-Apt-PEG probes. We demonstrated that PCN-224-Ab-PEG was compatible with commercial polymer-based probes but with superior sensitivity and specificity. Meanwhile, since PCN-224-Apt-PEG expressed both fluorescence and mass signals, we could adopt fluorescence signals for rapid tissue section scanning to swiftly identify the regions of interest (ROIs), and then adopt IMC for multiparameter imaging at the specific ROIs. The application of the PCN-224-Apt-PEG probe could significantly reduce the blind IMC scanning time by up to 90% and effectively compensate for IMC’s low resolution. This study not only broadens the application scope of luminescent metal–organic frameworks but also offers a potentially novel toolbox for single-cell multiparameter detection.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"216 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Luminescent Metal–Organic Framework Probes with Metallic and Fluorescent Dual-Properties for Mass Cytometry and Imaging\",\"authors\":\"Chengjie Huang, Tianbao Ye, Xiuyuan Wang, Ke Li, Yiyang Li, Lai Jiang, Xianting Ding\",\"doi\":\"10.1021/acs.analchem.4c07055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mass cytometry (CyTOF) and imaging mass cytometry (IMC), as cutting-edge technologies in single-cell analysis, are capable of detecting more than 40 biomarkers simultaneously on a single cell. However, their sensitivity and multiparameter detection capabilities have been long constrained by the development of metal labeling materials. Meanwhile, as an imaging technique, IMC has suffered from a rather slow data acquisition rate. Here, we present a luminescent PCN-224-OH material that exhibits both fluorescent and mass dual-functionality and is enriched with Zr–OH<sup>–</sup>/H<sub>2</sub>O active sites. Without the additional need for complex postmodification or chemical coupling reactions, PCN-224-OH can be directly functionalized with antibodies/aptamers and poly(ethylene glycol) (PEG), resulting in the production of PCN-224-Ab-PEG or PCN-224-Apt-PEG probes. We demonstrated that PCN-224-Ab-PEG was compatible with commercial polymer-based probes but with superior sensitivity and specificity. Meanwhile, since PCN-224-Apt-PEG expressed both fluorescence and mass signals, we could adopt fluorescence signals for rapid tissue section scanning to swiftly identify the regions of interest (ROIs), and then adopt IMC for multiparameter imaging at the specific ROIs. The application of the PCN-224-Apt-PEG probe could significantly reduce the blind IMC scanning time by up to 90% and effectively compensate for IMC’s low resolution. This study not only broadens the application scope of luminescent metal–organic frameworks but also offers a potentially novel toolbox for single-cell multiparameter detection.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"216 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.4c07055\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c07055","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Luminescent Metal–Organic Framework Probes with Metallic and Fluorescent Dual-Properties for Mass Cytometry and Imaging
Mass cytometry (CyTOF) and imaging mass cytometry (IMC), as cutting-edge technologies in single-cell analysis, are capable of detecting more than 40 biomarkers simultaneously on a single cell. However, their sensitivity and multiparameter detection capabilities have been long constrained by the development of metal labeling materials. Meanwhile, as an imaging technique, IMC has suffered from a rather slow data acquisition rate. Here, we present a luminescent PCN-224-OH material that exhibits both fluorescent and mass dual-functionality and is enriched with Zr–OH–/H2O active sites. Without the additional need for complex postmodification or chemical coupling reactions, PCN-224-OH can be directly functionalized with antibodies/aptamers and poly(ethylene glycol) (PEG), resulting in the production of PCN-224-Ab-PEG or PCN-224-Apt-PEG probes. We demonstrated that PCN-224-Ab-PEG was compatible with commercial polymer-based probes but with superior sensitivity and specificity. Meanwhile, since PCN-224-Apt-PEG expressed both fluorescence and mass signals, we could adopt fluorescence signals for rapid tissue section scanning to swiftly identify the regions of interest (ROIs), and then adopt IMC for multiparameter imaging at the specific ROIs. The application of the PCN-224-Apt-PEG probe could significantly reduce the blind IMC scanning time by up to 90% and effectively compensate for IMC’s low resolution. This study not only broadens the application scope of luminescent metal–organic frameworks but also offers a potentially novel toolbox for single-cell multiparameter detection.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.