通过密度泛函理论和机器学习识别用于电化学储能的 MOFs

IF 9.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Tian Sun, Zhenxiang Wang, Liang Zeng, Guang Feng
{"title":"通过密度泛函理论和机器学习识别用于电化学储能的 MOFs","authors":"Tian Sun, Zhenxiang Wang, Liang Zeng, Guang Feng","doi":"10.1038/s41524-025-01590-w","DOIUrl":null,"url":null,"abstract":"<p>Electrochemical energy storage (EES) systems demand electrode materials with high power density, energy density, and long cycle life. Metal-organic frameworks (MOFs) are promising electrode materials, while new MOFs with high conductivity, high stability, and abundant redox-reactive sites are demanded to meet the growing needs of EES. Density Functional Theory (DFT) could calculate these properties of MOFs and provide atomic-level insights into the mechanisms, based on which machine learning (ML) can screen MOFs for EES efficiently. In this review, we first review the exploration of mechanisms based on DFT calculations. We focus on the conductivity, stability, and reactivity of MOFs in EES systems. Then, we review the steps to apply ML in screening MOFs. Establishing datasets of MOFs, extracting features from MOF structure, and applying ML in screening MOFs are discussed. Finally, the review proposes the future avenue of DFT and ML to make up the gaps in the knowledge of MOFs.</p><figure></figure>","PeriodicalId":19342,"journal":{"name":"npj Computational Materials","volume":"21 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identifying MOFs for electrochemical energy storage via density functional theory and machine learning\",\"authors\":\"Tian Sun, Zhenxiang Wang, Liang Zeng, Guang Feng\",\"doi\":\"10.1038/s41524-025-01590-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electrochemical energy storage (EES) systems demand electrode materials with high power density, energy density, and long cycle life. Metal-organic frameworks (MOFs) are promising electrode materials, while new MOFs with high conductivity, high stability, and abundant redox-reactive sites are demanded to meet the growing needs of EES. Density Functional Theory (DFT) could calculate these properties of MOFs and provide atomic-level insights into the mechanisms, based on which machine learning (ML) can screen MOFs for EES efficiently. In this review, we first review the exploration of mechanisms based on DFT calculations. We focus on the conductivity, stability, and reactivity of MOFs in EES systems. Then, we review the steps to apply ML in screening MOFs. Establishing datasets of MOFs, extracting features from MOF structure, and applying ML in screening MOFs are discussed. Finally, the review proposes the future avenue of DFT and ML to make up the gaps in the knowledge of MOFs.</p><figure></figure>\",\"PeriodicalId\":19342,\"journal\":{\"name\":\"npj Computational Materials\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Computational Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1038/s41524-025-01590-w\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Computational Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41524-025-01590-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Identifying MOFs for electrochemical energy storage via density functional theory and machine learning

Identifying MOFs for electrochemical energy storage via density functional theory and machine learning

Electrochemical energy storage (EES) systems demand electrode materials with high power density, energy density, and long cycle life. Metal-organic frameworks (MOFs) are promising electrode materials, while new MOFs with high conductivity, high stability, and abundant redox-reactive sites are demanded to meet the growing needs of EES. Density Functional Theory (DFT) could calculate these properties of MOFs and provide atomic-level insights into the mechanisms, based on which machine learning (ML) can screen MOFs for EES efficiently. In this review, we first review the exploration of mechanisms based on DFT calculations. We focus on the conductivity, stability, and reactivity of MOFs in EES systems. Then, we review the steps to apply ML in screening MOFs. Establishing datasets of MOFs, extracting features from MOF structure, and applying ML in screening MOFs are discussed. Finally, the review proposes the future avenue of DFT and ML to make up the gaps in the knowledge of MOFs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Computational Materials
npj Computational Materials Mathematics-Modeling and Simulation
CiteScore
15.30
自引率
5.20%
发文量
229
审稿时长
6 weeks
期刊介绍: npj Computational Materials is a high-quality open access journal from Nature Research that publishes research papers applying computational approaches for the design of new materials and enhancing our understanding of existing ones. The journal also welcomes papers on new computational techniques and the refinement of current approaches that support these aims, as well as experimental papers that complement computational findings. Some key features of npj Computational Materials include a 2-year impact factor of 12.241 (2021), article downloads of 1,138,590 (2021), and a fast turnaround time of 11 days from submission to the first editorial decision. The journal is indexed in various databases and services, including Chemical Abstracts Service (ACS), Astrophysics Data System (ADS), Current Contents/Physical, Chemical and Earth Sciences, Journal Citation Reports/Science Edition, SCOPUS, EI Compendex, INSPEC, Google Scholar, SCImago, DOAJ, CNKI, and Science Citation Index Expanded (SCIE), among others.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信