农产品中吡虫啉视觉智能检测的荧光探针-智能手机-机器学习集成平台

IF 9.8 1区 农林科学 Q1 CHEMISTRY, APPLIED
Zheng Cheng , Xinfang Liu , Rongfang Li , Xu Liu , Xiaoyu Zhang , Xun Feng , Lijuan Zhou
{"title":"农产品中吡虫啉视觉智能检测的荧光探针-智能手机-机器学习集成平台","authors":"Zheng Cheng ,&nbsp;Xinfang Liu ,&nbsp;Rongfang Li ,&nbsp;Xu Liu ,&nbsp;Xiaoyu Zhang ,&nbsp;Xun Feng ,&nbsp;Lijuan Zhou","doi":"10.1016/j.foodchem.2025.144197","DOIUrl":null,"url":null,"abstract":"<div><div>Imidacloprid is a pesticide commonly used in agriculture production. Portable and accurate detection of imidacloprid residues is of great significance to food safety and human health. Herein, a red-emitting rare earth complex (Eu-IMDC) probe is prepared, which features low detection limit (75 nM), high selectivity and fast response speed (30 s) for imidacloprid detection. The detection mechanism is investigated through experiments and theoretical calculations. In addition, an intelligent detection platform integrating the fluorescence probe, smartphone and a feedforward neural network (FNN) model is constructed and applied to imidacloprid detection in real rice, millet, and ginger samples, achieving recovery rates range from 96.78 % to 104.77 % and relative standard deviation (RSD) values below than 3.83 %. Meanwhile, relevant parameters, such as the coefficient of determination (R<sup>2</sup>), root mean square error (RMSE) and residual prediction deviation (RPD) values, indicating excellent fitting and predictive performance of the FNN model. This work offers a rapid, portable, and intelligent sensing platform for pesticide residues in agricultural products.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"483 ","pages":"Article 144197"},"PeriodicalIF":9.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fluorescence probe-smartphone-machine learning integrated platform for the visual and intelligent detection of imidacloprid in agricultural products\",\"authors\":\"Zheng Cheng ,&nbsp;Xinfang Liu ,&nbsp;Rongfang Li ,&nbsp;Xu Liu ,&nbsp;Xiaoyu Zhang ,&nbsp;Xun Feng ,&nbsp;Lijuan Zhou\",\"doi\":\"10.1016/j.foodchem.2025.144197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Imidacloprid is a pesticide commonly used in agriculture production. Portable and accurate detection of imidacloprid residues is of great significance to food safety and human health. Herein, a red-emitting rare earth complex (Eu-IMDC) probe is prepared, which features low detection limit (75 nM), high selectivity and fast response speed (30 s) for imidacloprid detection. The detection mechanism is investigated through experiments and theoretical calculations. In addition, an intelligent detection platform integrating the fluorescence probe, smartphone and a feedforward neural network (FNN) model is constructed and applied to imidacloprid detection in real rice, millet, and ginger samples, achieving recovery rates range from 96.78 % to 104.77 % and relative standard deviation (RSD) values below than 3.83 %. Meanwhile, relevant parameters, such as the coefficient of determination (R<sup>2</sup>), root mean square error (RMSE) and residual prediction deviation (RPD) values, indicating excellent fitting and predictive performance of the FNN model. This work offers a rapid, portable, and intelligent sensing platform for pesticide residues in agricultural products.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"483 \",\"pages\":\"Article 144197\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625014487\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625014487","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

吡虫啉是农业生产中常用的一种农药。便携式、准确的吡虫啉残留检测对食品安全和人体健康具有重要意义。本文制备了一种检测限低(75 nM)、选择性高、响应速度快(30 s)的红色稀土配合物(Eu-IMDC)探针,用于吡虫啉的检测。通过实验和理论计算对其探测机理进行了研究。此外,构建了将荧光探针、智能手机和前馈神经网络(FNN)模型相结合的智能检测平台,并将其应用于实际大米、小米和生姜样品中的吡虫啉检测,回收率为96.78 % ~ 104.77 %,相对标准偏差(RSD)值小于3.83 %。同时,相关参数如决定系数(R2)、均方根误差(RMSE)和残差预测偏差(RPD)值均表明该FNN模型具有良好的拟合和预测性能。本研究为农产品中农药残留的快速、便携、智能化检测提供了平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A fluorescence probe-smartphone-machine learning integrated platform for the visual and intelligent detection of imidacloprid in agricultural products

A fluorescence probe-smartphone-machine learning integrated platform for the visual and intelligent detection of imidacloprid in agricultural products

A fluorescence probe-smartphone-machine learning integrated platform for the visual and intelligent detection of imidacloprid in agricultural products
Imidacloprid is a pesticide commonly used in agriculture production. Portable and accurate detection of imidacloprid residues is of great significance to food safety and human health. Herein, a red-emitting rare earth complex (Eu-IMDC) probe is prepared, which features low detection limit (75 nM), high selectivity and fast response speed (30 s) for imidacloprid detection. The detection mechanism is investigated through experiments and theoretical calculations. In addition, an intelligent detection platform integrating the fluorescence probe, smartphone and a feedforward neural network (FNN) model is constructed and applied to imidacloprid detection in real rice, millet, and ginger samples, achieving recovery rates range from 96.78 % to 104.77 % and relative standard deviation (RSD) values below than 3.83 %. Meanwhile, relevant parameters, such as the coefficient of determination (R2), root mean square error (RMSE) and residual prediction deviation (RPD) values, indicating excellent fitting and predictive performance of the FNN model. This work offers a rapid, portable, and intelligent sensing platform for pesticide residues in agricultural products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food Chemistry
Food Chemistry 工程技术-食品科技
CiteScore
16.30
自引率
10.20%
发文量
3130
审稿时长
122 days
期刊介绍: Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信