{"title":"绝对电致发光成像揭示多结太阳能电池的退化","authors":"Panpan Yang;Youyang Wang;Qiao Huang;Deyang Qin;Jianing Zhang;Wenjie Zhou;Guoen Weng;Xiaobo Hu;Junhao Chu;Hidefumi Akiyama;Shaoqiang Chen","doi":"10.1109/TED.2025.3546586","DOIUrl":null,"url":null,"abstract":"Multijunction solar cells (MJSCs) experience material degradation and reduced efficiency during long-term storage. Current defect analysis methods for III-V compound MJSCs are limited by a lack of intuitive tools and in-depth understanding, hindering improvements in yield and efficiency. Absolute electroluminescence (EL) is a powerful technique for visualization and predicting solar cell performance. In this study, we applied absolute EL to quantify performance and degradation mechanisms in subcells after 26 months of storage. Absolute EL imaging identified both potential and inherent defect types within the subcells. The detailed analysis of localized defect points showed reduced photon emission near the defect points. Using the reciprocity theorem and carrier balance model, we found that degradation in the InGaP/GaAs/InGaAs solar cell resulted in a 0.8% reduction in efficiency, largely due to nonradiative recombination (NR) losses. Additionally, the efficiencies of top, middle, and bottom cells decreased by reduced by 0.3%, 0.2%, and 0.3%, respectively. This work demonstrates that the absolute EL imaging technique provides a comprehensive and detailed method for understanding defects and energy losses during long-term storage in MJSC.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 4","pages":"1857-1863"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degradations of Multijunction Solar Cell Revealed by Absolute Electroluminescence Imaging\",\"authors\":\"Panpan Yang;Youyang Wang;Qiao Huang;Deyang Qin;Jianing Zhang;Wenjie Zhou;Guoen Weng;Xiaobo Hu;Junhao Chu;Hidefumi Akiyama;Shaoqiang Chen\",\"doi\":\"10.1109/TED.2025.3546586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multijunction solar cells (MJSCs) experience material degradation and reduced efficiency during long-term storage. Current defect analysis methods for III-V compound MJSCs are limited by a lack of intuitive tools and in-depth understanding, hindering improvements in yield and efficiency. Absolute electroluminescence (EL) is a powerful technique for visualization and predicting solar cell performance. In this study, we applied absolute EL to quantify performance and degradation mechanisms in subcells after 26 months of storage. Absolute EL imaging identified both potential and inherent defect types within the subcells. The detailed analysis of localized defect points showed reduced photon emission near the defect points. Using the reciprocity theorem and carrier balance model, we found that degradation in the InGaP/GaAs/InGaAs solar cell resulted in a 0.8% reduction in efficiency, largely due to nonradiative recombination (NR) losses. Additionally, the efficiencies of top, middle, and bottom cells decreased by reduced by 0.3%, 0.2%, and 0.3%, respectively. This work demonstrates that the absolute EL imaging technique provides a comprehensive and detailed method for understanding defects and energy losses during long-term storage in MJSC.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 4\",\"pages\":\"1857-1863\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10937113/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10937113/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Degradations of Multijunction Solar Cell Revealed by Absolute Electroluminescence Imaging
Multijunction solar cells (MJSCs) experience material degradation and reduced efficiency during long-term storage. Current defect analysis methods for III-V compound MJSCs are limited by a lack of intuitive tools and in-depth understanding, hindering improvements in yield and efficiency. Absolute electroluminescence (EL) is a powerful technique for visualization and predicting solar cell performance. In this study, we applied absolute EL to quantify performance and degradation mechanisms in subcells after 26 months of storage. Absolute EL imaging identified both potential and inherent defect types within the subcells. The detailed analysis of localized defect points showed reduced photon emission near the defect points. Using the reciprocity theorem and carrier balance model, we found that degradation in the InGaP/GaAs/InGaAs solar cell resulted in a 0.8% reduction in efficiency, largely due to nonradiative recombination (NR) losses. Additionally, the efficiencies of top, middle, and bottom cells decreased by reduced by 0.3%, 0.2%, and 0.3%, respectively. This work demonstrates that the absolute EL imaging technique provides a comprehensive and detailed method for understanding defects and energy losses during long-term storage in MJSC.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.