{"title":"在18A级技术的图形核心上实现的同步13.1 GHz背面谐振时钟网格","authors":"Ragh Kuttappa;Vinayak Honkote;Amreesh Rao;Gaurav Kamalkar;Kailash Chandrashekar;Eric Finley;Chaitanya Sankuratri;Faran Rafiq;Robert Orton;Nils Hernandez;Anuradha Srinivasan;Tanay Karnik","doi":"10.1109/LSSC.2025.3552251","DOIUrl":null,"url":null,"abstract":"This letter presents a global resonant clocking mesh architecture utilizing backside metal layers in an 18A class technology. Rotary traveling wave oscillators are implemented to provide synchronous low-skew, low-jitter, and 50% duty cycle clocks across a graphics core. To provide dynamic frequency and voltage scaling capabilities across a wide range of operating conditions, a high-speed fractional divider is designed. The proposed architecture is implemented on a 1.6 mm <inline-formula> <tex-math>$\\times $ </tex-math></inline-formula> 1.6 mm graphics core achieving FoMJ of 246 dB FoMT 190.3dBc/Hz.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"85-88"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Synchronous 13.1 GHz Backside Resonant Clocking Mesh Implemented on a Graphics Core in an 18A Class Technology\",\"authors\":\"Ragh Kuttappa;Vinayak Honkote;Amreesh Rao;Gaurav Kamalkar;Kailash Chandrashekar;Eric Finley;Chaitanya Sankuratri;Faran Rafiq;Robert Orton;Nils Hernandez;Anuradha Srinivasan;Tanay Karnik\",\"doi\":\"10.1109/LSSC.2025.3552251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter presents a global resonant clocking mesh architecture utilizing backside metal layers in an 18A class technology. Rotary traveling wave oscillators are implemented to provide synchronous low-skew, low-jitter, and 50% duty cycle clocks across a graphics core. To provide dynamic frequency and voltage scaling capabilities across a wide range of operating conditions, a high-speed fractional divider is designed. The proposed architecture is implemented on a 1.6 mm <inline-formula> <tex-math>$\\\\times $ </tex-math></inline-formula> 1.6 mm graphics core achieving FoMJ of 246 dB FoMT 190.3dBc/Hz.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"85-88\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10930546/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10930546/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
摘要
这封信介绍了一个利用18A级技术的背面金属层的全局谐振时钟网格架构。旋转行波振荡器的实现,以提供同步低斜,低抖动,和50%占空比时钟跨图形核心。为了在广泛的工作条件下提供动态频率和电压缩放能力,设计了高速分数分压器。所提出的架构在1.6 mm × 1.6 mm图形内核上实现,实现了246 dB的FoMJ 190.3dBc/Hz。
A Synchronous 13.1 GHz Backside Resonant Clocking Mesh Implemented on a Graphics Core in an 18A Class Technology
This letter presents a global resonant clocking mesh architecture utilizing backside metal layers in an 18A class technology. Rotary traveling wave oscillators are implemented to provide synchronous low-skew, low-jitter, and 50% duty cycle clocks across a graphics core. To provide dynamic frequency and voltage scaling capabilities across a wide range of operating conditions, a high-speed fractional divider is designed. The proposed architecture is implemented on a 1.6 mm $\times $ 1.6 mm graphics core achieving FoMJ of 246 dB FoMT 190.3dBc/Hz.