{"title":"杨梅果渣多酚对2型糖尿病小鼠的降糖作用及其机制(db/db)","authors":"Guoli Chang, Siyi Tian, Xinyu Luo, Yannan Xiang, Chenggang Cai, Ruiyu Zhu, Haiying Cai, Hailong Yang, Haiyan Gao","doi":"10.1002/mnfr.202400523","DOIUrl":null,"url":null,"abstract":"The <i>Myrica rubra</i> pomace polyphenols (MRPP) were used to study their hypoglycemic effects and mechanisms using Type 2 diabetes (T2D) (db/db) mice as the model. The results showed that the oral administration of MRPP (low-dose myricitrin, 50 mg/kg BW by gavage; high-dose myricitrin, 250 mg/kg BW by gavage; and <i>Myrica rubra</i> pomace, 500 mg/kg BW by gavage) for 4 weeks significantly reduced fasting blood glucose, glycated serum protein, serum insulin, and insulin resistance index in mice, as well as the dyslipidemia in mice was improved. MRPP was able to improve the structural morphology of hepatocytes and pancreatic β-cells in diabetic mice. Its hypoglycemic mechanism may involve the upregulation of GLUT-4 and IRS-1 genes expression in the PI3K and AMPK signaling pathways, downregulation of GSK-3β, AMPK, PI3K, and AKT genes expression, and enhancement of the activity of enzymes related to glycogen synthesis and glucose metabolism. Research findings on 16S rRNA suggest that MRPP has the ability to alter the composition of the gut microbiota, impede the growth of harmful bacteria, and foster the growth of beneficial bacteria. Therefore, MRPP was capable of reshaping the specific gut microbial community and supporting its application as a novel supplement in functional foods for the treatment of T2D.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"67 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hypoglycemic Effects and Mechanisms of Polyphenols From Myrica rubra Pomace in Type 2 Diabetes (db/db) Mice\",\"authors\":\"Guoli Chang, Siyi Tian, Xinyu Luo, Yannan Xiang, Chenggang Cai, Ruiyu Zhu, Haiying Cai, Hailong Yang, Haiyan Gao\",\"doi\":\"10.1002/mnfr.202400523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The <i>Myrica rubra</i> pomace polyphenols (MRPP) were used to study their hypoglycemic effects and mechanisms using Type 2 diabetes (T2D) (db/db) mice as the model. The results showed that the oral administration of MRPP (low-dose myricitrin, 50 mg/kg BW by gavage; high-dose myricitrin, 250 mg/kg BW by gavage; and <i>Myrica rubra</i> pomace, 500 mg/kg BW by gavage) for 4 weeks significantly reduced fasting blood glucose, glycated serum protein, serum insulin, and insulin resistance index in mice, as well as the dyslipidemia in mice was improved. MRPP was able to improve the structural morphology of hepatocytes and pancreatic β-cells in diabetic mice. Its hypoglycemic mechanism may involve the upregulation of GLUT-4 and IRS-1 genes expression in the PI3K and AMPK signaling pathways, downregulation of GSK-3β, AMPK, PI3K, and AKT genes expression, and enhancement of the activity of enzymes related to glycogen synthesis and glucose metabolism. Research findings on 16S rRNA suggest that MRPP has the ability to alter the composition of the gut microbiota, impede the growth of harmful bacteria, and foster the growth of beneficial bacteria. Therefore, MRPP was capable of reshaping the specific gut microbial community and supporting its application as a novel supplement in functional foods for the treatment of T2D.\",\"PeriodicalId\":212,\"journal\":{\"name\":\"Molecular Nutrition & Food Research\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Nutrition & Food Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1002/mnfr.202400523\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400523","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Hypoglycemic Effects and Mechanisms of Polyphenols From Myrica rubra Pomace in Type 2 Diabetes (db/db) Mice
The Myrica rubra pomace polyphenols (MRPP) were used to study their hypoglycemic effects and mechanisms using Type 2 diabetes (T2D) (db/db) mice as the model. The results showed that the oral administration of MRPP (low-dose myricitrin, 50 mg/kg BW by gavage; high-dose myricitrin, 250 mg/kg BW by gavage; and Myrica rubra pomace, 500 mg/kg BW by gavage) for 4 weeks significantly reduced fasting blood glucose, glycated serum protein, serum insulin, and insulin resistance index in mice, as well as the dyslipidemia in mice was improved. MRPP was able to improve the structural morphology of hepatocytes and pancreatic β-cells in diabetic mice. Its hypoglycemic mechanism may involve the upregulation of GLUT-4 and IRS-1 genes expression in the PI3K and AMPK signaling pathways, downregulation of GSK-3β, AMPK, PI3K, and AKT genes expression, and enhancement of the activity of enzymes related to glycogen synthesis and glucose metabolism. Research findings on 16S rRNA suggest that MRPP has the ability to alter the composition of the gut microbiota, impede the growth of harmful bacteria, and foster the growth of beneficial bacteria. Therefore, MRPP was capable of reshaping the specific gut microbial community and supporting its application as a novel supplement in functional foods for the treatment of T2D.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.