甲磺酸多沙唑嗪全身递送的缓释微针贴片。

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY
Bioimpacts Pub Date : 2024-08-03 eCollection Date: 2025-01-01 DOI:10.34172/bi.30257
Imran Anwar, Nadiah Zafar, Asif Mahmood, Zulcaif, Riffat Latif
{"title":"甲磺酸多沙唑嗪全身递送的缓释微针贴片。","authors":"Imran Anwar, Nadiah Zafar, Asif Mahmood, Zulcaif, Riffat Latif","doi":"10.34172/bi.30257","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>Microneedle patch is one of the fascinating drug delivery approaches that offers low invasiveness and a painless physical application to enhance the delivery of micro and macro-molecules into the skin.</p><p><strong>Methods: </strong>Variable contents of chitosan and polyvinyl alcohol were used for the development of doxazosin mesylate containing sustained release microneedle patches via solvent casting technique. The prepared patches were evaluated for microscopic evaluation, mechanical strength, drug loading (%) and Fourier transform infrared spectroscopy (FTIR) etc. The skin penetration study was performed by using pig ear skin and results were captured through confocal microscopy. <i>Ex-vivo</i> release study and pharmacokinetic evaluation were also performed.</p><p><strong>Results: </strong>Sharp needle tips with a height of 600µm and a base of 200µm were confirmed through microscopic examination. Optimized formulation (SRF-6) exhibited loading of 92.11% doxazosin mesylate with appreciable strength up to 1.94N force. <i>Ex-vivo</i> release studies revealed 87.24% release within 48 hours. Moreover, the pharmacokinetic parameters in case of optimized patch formulation (SRF-6) were markedly improved i.e. MRT (19.46 h), AUC (57.12 μg.h /mL), C<sub>max</sub> (2.16 µg /mL), t<sub>max</sub> (10.10 h) and t<sub>1/2</sub> (6.32 h) as compared to commercially available tablet. Biocompatibility of the developed patches was validated from skin irritation studies.</p><p><strong>Conclusion: </strong>Results confirmed the successful fabrication of microneedle patch having sufficient strength and effective penetration ability into the skin to ensure controlled release of incorporated drug for the intended duration. It can be employed as an efficient carrier system for other therapeutics those are prone to bioavailability issues due to first pass effect after their oral administration.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"15 ","pages":"30257"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954738/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate.\",\"authors\":\"Imran Anwar, Nadiah Zafar, Asif Mahmood, Zulcaif, Riffat Latif\",\"doi\":\"10.34172/bi.30257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p></p><p><strong>Introduction: </strong>Microneedle patch is one of the fascinating drug delivery approaches that offers low invasiveness and a painless physical application to enhance the delivery of micro and macro-molecules into the skin.</p><p><strong>Methods: </strong>Variable contents of chitosan and polyvinyl alcohol were used for the development of doxazosin mesylate containing sustained release microneedle patches via solvent casting technique. The prepared patches were evaluated for microscopic evaluation, mechanical strength, drug loading (%) and Fourier transform infrared spectroscopy (FTIR) etc. The skin penetration study was performed by using pig ear skin and results were captured through confocal microscopy. <i>Ex-vivo</i> release study and pharmacokinetic evaluation were also performed.</p><p><strong>Results: </strong>Sharp needle tips with a height of 600µm and a base of 200µm were confirmed through microscopic examination. Optimized formulation (SRF-6) exhibited loading of 92.11% doxazosin mesylate with appreciable strength up to 1.94N force. <i>Ex-vivo</i> release studies revealed 87.24% release within 48 hours. Moreover, the pharmacokinetic parameters in case of optimized patch formulation (SRF-6) were markedly improved i.e. MRT (19.46 h), AUC (57.12 μg.h /mL), C<sub>max</sub> (2.16 µg /mL), t<sub>max</sub> (10.10 h) and t<sub>1/2</sub> (6.32 h) as compared to commercially available tablet. Biocompatibility of the developed patches was validated from skin irritation studies.</p><p><strong>Conclusion: </strong>Results confirmed the successful fabrication of microneedle patch having sufficient strength and effective penetration ability into the skin to ensure controlled release of incorporated drug for the intended duration. It can be employed as an efficient carrier system for other therapeutics those are prone to bioavailability issues due to first pass effect after their oral administration.</p>\",\"PeriodicalId\":48614,\"journal\":{\"name\":\"Bioimpacts\",\"volume\":\"15 \",\"pages\":\"30257\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954738/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioimpacts\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.34172/bi.30257\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.30257","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

微针贴片是一种令人着迷的药物递送方法,它提供了低侵入性和无痛的物理应用,以增强微分子和大分子进入皮肤的递送。方法:采用不同含量的壳聚糖和聚乙烯醇,采用溶剂铸造法制备甲磺酸多沙唑嗪缓释微针贴剂。对制备的贴片进行显微评价、机械强度、载药量(%)、傅里叶变换红外光谱(FTIR)等评价。采用猪耳皮肤进行皮肤渗透研究,并通过共聚焦显微镜捕获结果。并进行了体外释放研究和药代动力学评价。结果:镜检证实针尖尖锐,针尖高度600µm,针尖基部200µm。优化后的配方SRF-6的甲磺酸多沙唑嗪负载量为92.11%,强度可达1.94N。体外释放研究显示,48小时内释放87.24%。优化后的贴片(SRF-6)的药代动力学参数MRT (19.46 h)、AUC (57.12 μg.h /mL)、Cmax (2.16 μg /mL)、tmax (10.10 h)和t1/2 (6.32 h)均较市售片剂有明显改善。开发的贴片的生物相容性通过皮肤刺激研究得到验证。结论:成功制备的微针贴片具有足够的强度和有效的透皮能力,可保证药物在预定时间内控释。它可以作为一种有效的载体系统用于其他治疗药物,这些治疗药物在口服给药后由于第一次通过效应而容易出现生物利用度问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sustained release microneedle patch for pronounced systemic delivery of doxazosin mesylate.

Introduction: Microneedle patch is one of the fascinating drug delivery approaches that offers low invasiveness and a painless physical application to enhance the delivery of micro and macro-molecules into the skin.

Methods: Variable contents of chitosan and polyvinyl alcohol were used for the development of doxazosin mesylate containing sustained release microneedle patches via solvent casting technique. The prepared patches were evaluated for microscopic evaluation, mechanical strength, drug loading (%) and Fourier transform infrared spectroscopy (FTIR) etc. The skin penetration study was performed by using pig ear skin and results were captured through confocal microscopy. Ex-vivo release study and pharmacokinetic evaluation were also performed.

Results: Sharp needle tips with a height of 600µm and a base of 200µm were confirmed through microscopic examination. Optimized formulation (SRF-6) exhibited loading of 92.11% doxazosin mesylate with appreciable strength up to 1.94N force. Ex-vivo release studies revealed 87.24% release within 48 hours. Moreover, the pharmacokinetic parameters in case of optimized patch formulation (SRF-6) were markedly improved i.e. MRT (19.46 h), AUC (57.12 μg.h /mL), Cmax (2.16 µg /mL), tmax (10.10 h) and t1/2 (6.32 h) as compared to commercially available tablet. Biocompatibility of the developed patches was validated from skin irritation studies.

Conclusion: Results confirmed the successful fabrication of microneedle patch having sufficient strength and effective penetration ability into the skin to ensure controlled release of incorporated drug for the intended duration. It can be employed as an efficient carrier system for other therapeutics those are prone to bioavailability issues due to first pass effect after their oral administration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信