IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY
Bioimpacts Pub Date : 2024-09-24 eCollection Date: 2025-01-01 DOI:10.34172/bi.30272
Pezhman Yarahmadi, Ehsan Ahmadpour, Parham Moradi, Nasser Samadzadehaghdam
{"title":"Automatic classification of <i>Giardia</i> infection from stool microscopic images using deep neural networks.","authors":"Pezhman Yarahmadi, Ehsan Ahmadpour, Parham Moradi, Nasser Samadzadehaghdam","doi":"10.34172/bi.30272","DOIUrl":null,"url":null,"abstract":"<p><p></p><p><strong>Introduction: </strong>Giardiasis is a common intestinal infection caused by the <i>Giardia</i> lamblia parasite, and its rapid and accurate diagnosis is crucial for effective treatment. The automatic classification of <i>Giardia</i> infection from stool microscopic images plays a vital role in this diagnosis process. In this study, we applied deep learning-based models to automatically classify stool microscopic images into three categories, namely, normal, cyst, and trophozoite.</p><p><strong>Methods: </strong>Unlike previous studies focused on images acquired from drinking water samples, we specifically targeted stool samples. In this regard, we collected a dataset of 1610 microscopic digital images captured by a smartphone with a resolution of 2340 × 1080 pixels from stool samples under the Nikon YS100 microscope. First, we applied CLAHE (Contrast Limited Adaptive Histogram Equalization) histogram equalization a method to enhance the image quality and contrast. We employed three deep learning models, namely Xception, ResNet-50, and EfficientNet-B0, to evaluate their classification performance. Each model was trained on the dataset of microscopic images and fine-tuned using transfer learning techniques.</p><p><strong>Results: </strong>Among the three deep learning models, EfficientNet-B0 demonstrated superior performance in classifying <i>Giardia</i> lamblia parasites from stool microscopic images. The model achieved precision, accuracy, recall, specificity, and F1-score values of 0.9599, 0.9629, 0.9619, 0.9821, and 0.9607, respectively.</p><p><strong>Conclusion: </strong>The EfficientNet-B0 showed promising results in accurately identifying normal, cyst, and trophozoite forms of <i>Giardia</i> lamblia parasites. This automated classification approach can provide valuable assistance to laboratory science experts and parasitologists in the rapid and accurate diagnosis of giardiasis, ultimately improving patient care and treatment outcomes.</p>","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":"15 ","pages":"30272"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11954735/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.34172/bi.30272","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

导言:贾第虫病是一种由蓝氏贾第虫引起的常见肠道传染病,快速准确的诊断对有效治疗至关重要。从粪便显微图像中自动分类贾第虫感染在诊断过程中起着至关重要的作用。在本研究中,我们应用基于深度学习的模型将粪便显微图像自动分为三类,即正常、囊肿和滋养体:与以往侧重于从饮用水样本中获取图像的研究不同,我们特别针对粪便样本进行了研究。为此,我们在尼康 YS100 显微镜下收集了由智能手机拍摄的 1610 张显微数字图像数据集,分辨率为 2340 × 1080 像素。首先,我们应用了 CLAHE(对比度受限自适应直方图均衡化)直方图均衡化方法来提高图像质量和对比度。我们采用了三种深度学习模型,即 Xception、ResNet-50 和 EfficientNet-B0,来评估它们的分类性能。每个模型都在显微图像数据集上进行了训练,并使用迁移学习技术进行了微调:在这三种深度学习模型中,EfficientNet-B0 在对粪便显微图像中的贾第鞭毛虫寄生虫进行分类方面表现优异。该模型的精确度、准确度、召回率、特异性和 F1 分数分别达到了 0.9599、0.9629、0.9619、0.9821 和 0.9607:EfficientNet-B0在准确识别正常、囊肿和滋养体形式的蓝氏贾第鞭毛虫寄生虫方面显示出良好的效果。这种自动分类方法可以为实验室科学专家和寄生虫学家快速准确地诊断贾第虫病提供有价值的帮助,最终改善患者护理和治疗效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic classification of Giardia infection from stool microscopic images using deep neural networks.

Introduction: Giardiasis is a common intestinal infection caused by the Giardia lamblia parasite, and its rapid and accurate diagnosis is crucial for effective treatment. The automatic classification of Giardia infection from stool microscopic images plays a vital role in this diagnosis process. In this study, we applied deep learning-based models to automatically classify stool microscopic images into three categories, namely, normal, cyst, and trophozoite.

Methods: Unlike previous studies focused on images acquired from drinking water samples, we specifically targeted stool samples. In this regard, we collected a dataset of 1610 microscopic digital images captured by a smartphone with a resolution of 2340 × 1080 pixels from stool samples under the Nikon YS100 microscope. First, we applied CLAHE (Contrast Limited Adaptive Histogram Equalization) histogram equalization a method to enhance the image quality and contrast. We employed three deep learning models, namely Xception, ResNet-50, and EfficientNet-B0, to evaluate their classification performance. Each model was trained on the dataset of microscopic images and fine-tuned using transfer learning techniques.

Results: Among the three deep learning models, EfficientNet-B0 demonstrated superior performance in classifying Giardia lamblia parasites from stool microscopic images. The model achieved precision, accuracy, recall, specificity, and F1-score values of 0.9599, 0.9629, 0.9619, 0.9821, and 0.9607, respectively.

Conclusion: The EfficientNet-B0 showed promising results in accurately identifying normal, cyst, and trophozoite forms of Giardia lamblia parasites. This automated classification approach can provide valuable assistance to laboratory science experts and parasitologists in the rapid and accurate diagnosis of giardiasis, ultimately improving patient care and treatment outcomes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信