神经科学中单细胞转录组数据分析的实用指南。

IF 2.4 4区 医学 Q3 NEUROSCIENCES
Yoshinori Hayakawa , Haruka Ozaki
{"title":"神经科学中单细胞转录组数据分析的实用指南。","authors":"Yoshinori Hayakawa ,&nbsp;Haruka Ozaki","doi":"10.1016/j.neures.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Single-cell RNA sequencing (scRNA-seq) has revolutionized our ability to analyze gene expression at the single-cell level, providing unprecedented insights into cellular heterogeneity, rare cell populations, and dynamic cellular processes. In neuroscience, scRNA-seq has enabled the identification of diverse brain cell types, elucidation of developmental pathways, and discovery of mechanisms underlying neurological diseases. This tutorial provides a practical guide to scRNA-seq data analysis in neuroscience, focusing on the essential workflows and theoretical foundations. Key steps covered include quality control, data preprocessing, integration, cell clustering, and differential expression analysis. Using the Seurat R package, the tutorial demonstrates a comparative analysis approach for identifying differentially expressed genes between conditions, emphasizing the biological interpretation of results. By addressing the unique challenges of scRNA-seq data and illustrating methods for robust analysis, this work aims to enhance the reliability and reproducibility of scRNA-seq studies in neuroscience, supporting the exploration of cellular mechanisms and advancing research into brain function and disease.</div></div>","PeriodicalId":19146,"journal":{"name":"Neuroscience Research","volume":"214 ","pages":"Pages 9-15"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A practical guide for single-cell transcriptome data analysis in neuroscience\",\"authors\":\"Yoshinori Hayakawa ,&nbsp;Haruka Ozaki\",\"doi\":\"10.1016/j.neures.2025.03.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Single-cell RNA sequencing (scRNA-seq) has revolutionized our ability to analyze gene expression at the single-cell level, providing unprecedented insights into cellular heterogeneity, rare cell populations, and dynamic cellular processes. In neuroscience, scRNA-seq has enabled the identification of diverse brain cell types, elucidation of developmental pathways, and discovery of mechanisms underlying neurological diseases. This tutorial provides a practical guide to scRNA-seq data analysis in neuroscience, focusing on the essential workflows and theoretical foundations. Key steps covered include quality control, data preprocessing, integration, cell clustering, and differential expression analysis. Using the Seurat R package, the tutorial demonstrates a comparative analysis approach for identifying differentially expressed genes between conditions, emphasizing the biological interpretation of results. By addressing the unique challenges of scRNA-seq data and illustrating methods for robust analysis, this work aims to enhance the reliability and reproducibility of scRNA-seq studies in neuroscience, supporting the exploration of cellular mechanisms and advancing research into brain function and disease.</div></div>\",\"PeriodicalId\":19146,\"journal\":{\"name\":\"Neuroscience Research\",\"volume\":\"214 \",\"pages\":\"Pages 9-15\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168010225000653\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168010225000653","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

单细胞RNA测序(scRNA-seq)彻底改变了我们在单细胞水平上分析基因表达的能力,为细胞异质性、罕见细胞群体和动态细胞过程提供了前所未有的见解。在神经科学领域,scRNA-seq能够识别不同的脑细胞类型,阐明发育途径,并发现神经系统疾病的机制。本教程为神经科学中的scRNA-seq数据分析提供了实用指南,重点介绍了基本工作流程和理论基础。关键步骤包括质量控制、数据预处理、整合、细胞聚类和差异表达分析。使用Seurat R软件包,本教程演示了一种比较分析方法,用于识别不同条件下差异表达的基因,强调结果的生物学解释。通过解决scRNA-seq数据的独特挑战,并说明稳健分析的方法,本工作旨在提高神经科学中scRNA-seq研究的可靠性和可重复性,支持细胞机制的探索,推进脑功能和疾病的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical guide for single-cell transcriptome data analysis in neuroscience
Single-cell RNA sequencing (scRNA-seq) has revolutionized our ability to analyze gene expression at the single-cell level, providing unprecedented insights into cellular heterogeneity, rare cell populations, and dynamic cellular processes. In neuroscience, scRNA-seq has enabled the identification of diverse brain cell types, elucidation of developmental pathways, and discovery of mechanisms underlying neurological diseases. This tutorial provides a practical guide to scRNA-seq data analysis in neuroscience, focusing on the essential workflows and theoretical foundations. Key steps covered include quality control, data preprocessing, integration, cell clustering, and differential expression analysis. Using the Seurat R package, the tutorial demonstrates a comparative analysis approach for identifying differentially expressed genes between conditions, emphasizing the biological interpretation of results. By addressing the unique challenges of scRNA-seq data and illustrating methods for robust analysis, this work aims to enhance the reliability and reproducibility of scRNA-seq studies in neuroscience, supporting the exploration of cellular mechanisms and advancing research into brain function and disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience Research
Neuroscience Research 医学-神经科学
CiteScore
5.60
自引率
3.40%
发文量
136
审稿时长
28 days
期刊介绍: The international journal publishing original full-length research articles, short communications, technical notes, and reviews on all aspects of neuroscience Neuroscience Research is an international journal for high quality articles in all branches of neuroscience, from the molecular to the behavioral levels. The journal is published in collaboration with the Japan Neuroscience Society and is open to all contributors in the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信