Yun Hao;Bo Zhou;Xukun Wang;Chunli Huang;Zhihua Wang
{"title":"具有可重构单向增益的双向近地电流传感器","authors":"Yun Hao;Bo Zhou;Xukun Wang;Chunli Huang;Zhihua Wang","doi":"10.1109/LSSC.2025.3549495","DOIUrl":null,"url":null,"abstract":"A bi-directional near-ground-output low-side-input current-sensing amplifier (CSA) is fabricated in 65-nm CMOS. Two negative-feedback paths drive dual pMOS transistors to conduct an auto-switching bi-directional current detection with configurable unidirectional gains, which reduces the conventional switching-point distortions and doubles the sensing accuracy. A DC shifter based on a negative-feedback loop, avoids an input large current to benefit the sensing linearity, and optimizes the common-mode rejection ratio (CMRR). Various noise and offset suppression mechanisms are also utilized. Experimental results show that the proposed CSA achieves an offset voltage of <inline-formula> <tex-math>$1.58~\\mu $ </tex-math></inline-formula>V, a noise level of 37.5 nV/<inline-formula> <tex-math>$\\surd $ </tex-math></inline-formula>Hz, and a CMRR up to 159 dB, with the power dissipation of 0.36 mW from a 1-V supply and an active area of 0.19 mm2. Reconfigurable or different unidirectional gains and near-ground input / output voltages are achieved, which are different from the existing designs.","PeriodicalId":13032,"journal":{"name":"IEEE Solid-State Circuits Letters","volume":"8 ","pages":"77-80"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bi-Directional Near-Ground Current Sensor With Reconfigurable Unidirectional Gains\",\"authors\":\"Yun Hao;Bo Zhou;Xukun Wang;Chunli Huang;Zhihua Wang\",\"doi\":\"10.1109/LSSC.2025.3549495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bi-directional near-ground-output low-side-input current-sensing amplifier (CSA) is fabricated in 65-nm CMOS. Two negative-feedback paths drive dual pMOS transistors to conduct an auto-switching bi-directional current detection with configurable unidirectional gains, which reduces the conventional switching-point distortions and doubles the sensing accuracy. A DC shifter based on a negative-feedback loop, avoids an input large current to benefit the sensing linearity, and optimizes the common-mode rejection ratio (CMRR). Various noise and offset suppression mechanisms are also utilized. Experimental results show that the proposed CSA achieves an offset voltage of <inline-formula> <tex-math>$1.58~\\\\mu $ </tex-math></inline-formula>V, a noise level of 37.5 nV/<inline-formula> <tex-math>$\\\\surd $ </tex-math></inline-formula>Hz, and a CMRR up to 159 dB, with the power dissipation of 0.36 mW from a 1-V supply and an active area of 0.19 mm2. Reconfigurable or different unidirectional gains and near-ground input / output voltages are achieved, which are different from the existing designs.\",\"PeriodicalId\":13032,\"journal\":{\"name\":\"IEEE Solid-State Circuits Letters\",\"volume\":\"8 \",\"pages\":\"77-80\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Solid-State Circuits Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10918840/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Solid-State Circuits Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10918840/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
A Bi-Directional Near-Ground Current Sensor With Reconfigurable Unidirectional Gains
A bi-directional near-ground-output low-side-input current-sensing amplifier (CSA) is fabricated in 65-nm CMOS. Two negative-feedback paths drive dual pMOS transistors to conduct an auto-switching bi-directional current detection with configurable unidirectional gains, which reduces the conventional switching-point distortions and doubles the sensing accuracy. A DC shifter based on a negative-feedback loop, avoids an input large current to benefit the sensing linearity, and optimizes the common-mode rejection ratio (CMRR). Various noise and offset suppression mechanisms are also utilized. Experimental results show that the proposed CSA achieves an offset voltage of $1.58~\mu $ V, a noise level of 37.5 nV/$\surd $ Hz, and a CMRR up to 159 dB, with the power dissipation of 0.36 mW from a 1-V supply and an active area of 0.19 mm2. Reconfigurable or different unidirectional gains and near-ground input / output voltages are achieved, which are different from the existing designs.