Tianyi Zhang, Yingying Zhao, Cong Zhu, Xi Zhu, Xiaohua Zhu, Ye Qiu, Zhou Nie, Chunyang Lei
{"title":"CRISPR/Cas12a 蛋白开关驱动的无标签电化学生物传感器用于灵敏检测病毒蛋白酶","authors":"Tianyi Zhang, Yingying Zhao, Cong Zhu, Xi Zhu, Xiaohua Zhu, Ye Qiu, Zhou Nie, Chunyang Lei","doi":"10.1021/acs.analchem.5c00547","DOIUrl":null,"url":null,"abstract":"Viral proteases are critical molecular targets in viral pathogenesis, representing pivotal biomarkers for understanding viral infection mechanisms and developing antiviral therapeutics. This study introduces a label-free electrochemical biosensor that enables sensitive viral protease detection by integrating protease-responsive CRISPR/Cas protein switches (CasPSs) with a hemin aptamer-functionalized electrochemical interface. The biosensor’s mechanism relies on viral protease-mediated proteolysis, which leads to the release of active Cas12a proteins from CasPSs and generates amplified electrochemical responses through continuous cleavage of immobilized redox-active hemin/aptamer complexes. This biosensor achieved specific hepatitis C virus NS3/4A protease sensing with femtomolar sensitivity and could be readily expanded to other viral proteases by replacing the CasPS module. The feasibility of this biosensor was demonstrated by monitoring enterovirus 71 3C protease activities in virus-infected cell samples with different viral loads and postinfection times. This study provides a promising strategy for integrating CRISPR biosensing with electrochemical platforms, offering a helpful analytical tool for viral infection monitoring and antiviral drug screening.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"103 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR/Cas12a Protein Switch Powered Label-Free Electrochemical Biosensor for Sensitive Viral Protease Detection\",\"authors\":\"Tianyi Zhang, Yingying Zhao, Cong Zhu, Xi Zhu, Xiaohua Zhu, Ye Qiu, Zhou Nie, Chunyang Lei\",\"doi\":\"10.1021/acs.analchem.5c00547\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Viral proteases are critical molecular targets in viral pathogenesis, representing pivotal biomarkers for understanding viral infection mechanisms and developing antiviral therapeutics. This study introduces a label-free electrochemical biosensor that enables sensitive viral protease detection by integrating protease-responsive CRISPR/Cas protein switches (CasPSs) with a hemin aptamer-functionalized electrochemical interface. The biosensor’s mechanism relies on viral protease-mediated proteolysis, which leads to the release of active Cas12a proteins from CasPSs and generates amplified electrochemical responses through continuous cleavage of immobilized redox-active hemin/aptamer complexes. This biosensor achieved specific hepatitis C virus NS3/4A protease sensing with femtomolar sensitivity and could be readily expanded to other viral proteases by replacing the CasPS module. The feasibility of this biosensor was demonstrated by monitoring enterovirus 71 3C protease activities in virus-infected cell samples with different viral loads and postinfection times. This study provides a promising strategy for integrating CRISPR biosensing with electrochemical platforms, offering a helpful analytical tool for viral infection monitoring and antiviral drug screening.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"103 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c00547\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00547","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
CRISPR/Cas12a Protein Switch Powered Label-Free Electrochemical Biosensor for Sensitive Viral Protease Detection
Viral proteases are critical molecular targets in viral pathogenesis, representing pivotal biomarkers for understanding viral infection mechanisms and developing antiviral therapeutics. This study introduces a label-free electrochemical biosensor that enables sensitive viral protease detection by integrating protease-responsive CRISPR/Cas protein switches (CasPSs) with a hemin aptamer-functionalized electrochemical interface. The biosensor’s mechanism relies on viral protease-mediated proteolysis, which leads to the release of active Cas12a proteins from CasPSs and generates amplified electrochemical responses through continuous cleavage of immobilized redox-active hemin/aptamer complexes. This biosensor achieved specific hepatitis C virus NS3/4A protease sensing with femtomolar sensitivity and could be readily expanded to other viral proteases by replacing the CasPS module. The feasibility of this biosensor was demonstrated by monitoring enterovirus 71 3C protease activities in virus-infected cell samples with different viral loads and postinfection times. This study provides a promising strategy for integrating CRISPR biosensing with electrochemical platforms, offering a helpful analytical tool for viral infection monitoring and antiviral drug screening.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.