通过双膜辅助电荷标记、富集和现场洗脱 NanoESI-MS 加强呼吸醛分析

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Beichen Zhu, Yifan Wei, Xiumei Zheng, Chengxi Tang, Xiaobo Xie, Yi Lv
{"title":"通过双膜辅助电荷标记、富集和现场洗脱 NanoESI-MS 加强呼吸醛分析","authors":"Beichen Zhu, Yifan Wei, Xiumei Zheng, Chengxi Tang, Xiaobo Xie, Yi Lv","doi":"10.1021/acs.analchem.5c00434","DOIUrl":null,"url":null,"abstract":"Aldehydes, crucial volatile organic compounds present in exhaled breath, have been established as promising biomarkers for cancer diagnosis. However, their rapid and sensitive detection through widely employed spray-based ionization mass spectrometry is still challenging. To address this, we introduce a charged “iridium isotopic signature” probe tailored for efficient capture and unambiguous identification of ubiquitous aldehydes in the gas phase. This <sup>191/193</sup>Ir-tagged mass spectrometric probe, equipped with a reactive amine moiety capable of interacting with aldehydes, is immobilized on the porous Nylon-6 membrane that facilitates efficient gas transport and enriches aldehydes from the complex breath matrix. Following a rapid solvent extraction, the Ir-tagging aldehyde derivatives were successfully eluted with efficient removal of excess probes by the oxidized cellulose membrane, yielding a purified sample ideally suited for direct, rapid, and ultrasensitive (with a detection limit below 0.1 ppt) nanoelectrospray ionization mass spectrometry (nanoESI-MS) analysis. By utilizing an analogous iridium complex as an internal standard, our method precisely identified and quantified 12 aldehydes in exhaled breath (EB), with several exhibiting significant elevations in esophageal cancer patients compared with healthy controls. This highlights its efficacy as a rapid and accurate tool for detecting breath aldehyde biomarkers, offering promising avenues for cancer diagnosis.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"33 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Breath Aldehyde Analysis by Dual-Membrane-Assisted Charge Tagging, Enrichment, and Onsite Elution NanoESI-MS\",\"authors\":\"Beichen Zhu, Yifan Wei, Xiumei Zheng, Chengxi Tang, Xiaobo Xie, Yi Lv\",\"doi\":\"10.1021/acs.analchem.5c00434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aldehydes, crucial volatile organic compounds present in exhaled breath, have been established as promising biomarkers for cancer diagnosis. However, their rapid and sensitive detection through widely employed spray-based ionization mass spectrometry is still challenging. To address this, we introduce a charged “iridium isotopic signature” probe tailored for efficient capture and unambiguous identification of ubiquitous aldehydes in the gas phase. This <sup>191/193</sup>Ir-tagged mass spectrometric probe, equipped with a reactive amine moiety capable of interacting with aldehydes, is immobilized on the porous Nylon-6 membrane that facilitates efficient gas transport and enriches aldehydes from the complex breath matrix. Following a rapid solvent extraction, the Ir-tagging aldehyde derivatives were successfully eluted with efficient removal of excess probes by the oxidized cellulose membrane, yielding a purified sample ideally suited for direct, rapid, and ultrasensitive (with a detection limit below 0.1 ppt) nanoelectrospray ionization mass spectrometry (nanoESI-MS) analysis. By utilizing an analogous iridium complex as an internal standard, our method precisely identified and quantified 12 aldehydes in exhaled breath (EB), with several exhibiting significant elevations in esophageal cancer patients compared with healthy controls. This highlights its efficacy as a rapid and accurate tool for detecting breath aldehyde biomarkers, offering promising avenues for cancer diagnosis.\",\"PeriodicalId\":27,\"journal\":{\"name\":\"Analytical Chemistry\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.analchem.5c00434\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.5c00434","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced Breath Aldehyde Analysis by Dual-Membrane-Assisted Charge Tagging, Enrichment, and Onsite Elution NanoESI-MS

Enhanced Breath Aldehyde Analysis by Dual-Membrane-Assisted Charge Tagging, Enrichment, and Onsite Elution NanoESI-MS
Aldehydes, crucial volatile organic compounds present in exhaled breath, have been established as promising biomarkers for cancer diagnosis. However, their rapid and sensitive detection through widely employed spray-based ionization mass spectrometry is still challenging. To address this, we introduce a charged “iridium isotopic signature” probe tailored for efficient capture and unambiguous identification of ubiquitous aldehydes in the gas phase. This 191/193Ir-tagged mass spectrometric probe, equipped with a reactive amine moiety capable of interacting with aldehydes, is immobilized on the porous Nylon-6 membrane that facilitates efficient gas transport and enriches aldehydes from the complex breath matrix. Following a rapid solvent extraction, the Ir-tagging aldehyde derivatives were successfully eluted with efficient removal of excess probes by the oxidized cellulose membrane, yielding a purified sample ideally suited for direct, rapid, and ultrasensitive (with a detection limit below 0.1 ppt) nanoelectrospray ionization mass spectrometry (nanoESI-MS) analysis. By utilizing an analogous iridium complex as an internal standard, our method precisely identified and quantified 12 aldehydes in exhaled breath (EB), with several exhibiting significant elevations in esophageal cancer patients compared with healthy controls. This highlights its efficacy as a rapid and accurate tool for detecting breath aldehyde biomarkers, offering promising avenues for cancer diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信