一种新型硅积累模式沟槽双向开关

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
H. Abnavi;C. Steenge;J. W. Berenschot;N. R. Tas;R. J. E. Hueting
{"title":"一种新型硅积累模式沟槽双向开关","authors":"H. Abnavi;C. Steenge;J. W. Berenschot;N. R. Tas;R. J. E. Hueting","doi":"10.1109/TED.2025.3546582","DOIUrl":null,"url":null,"abstract":"The bidirectional switch, or bidiswitch, is a key component widely used for battery protection. During charging and discharging of the battery, the bidiswitch should be able to handle sufficient current and to block high voltages all in both the directions. In this work, we propose a new type of silicon bidiswitch: the accumulation-mode trench bidiswitch (AM bidiswitch). Due to aggressive cell dimensions (<inline-formula> <tex-math>$\\leq 0.6 \\; \\mu $ </tex-math></inline-formula>m), both the accumulation-mode field effect and the reduced surface field (RESURF) effect can be adopted, so that no separate p-body connection is required, and consequently, minimal specific <sc>on</small>-resistances (<inline-formula> <tex-math>${R}_{\\text {on,sp}}$ </tex-math></inline-formula>) and even minimal leakage currents (<inline-formula> <tex-math>${I}_{\\text {rev}}$ </tex-math></inline-formula>) can be obtained. Based on a theoretical framework, an optimization guideline is presented using TCAD simulations. The results show <inline-formula> <tex-math>${R}_{\\text {on,sp}}$ </tex-math></inline-formula> values ranging from 3.5 to 10.8 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>mm2 for stripe (or 2-D) structures and 6.5 to 45.6 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>mm2 for gate-all-around (GAA) structures, with breakdown voltages (BVs) ranging from 25 to 75 V. For high temperatures (<inline-formula> <tex-math>${T} = {425} \\; \\text {K}$ </tex-math></inline-formula>), the obtained minimal <inline-formula> <tex-math>${I}_{\\text {rev}}$ </tex-math></inline-formula> ranges from 0.75 to over 5 mA for the stripe structures and from 0.1 to 0.4 mA for the GAA structures both for an active device area of <inline-formula> <tex-math>$1 \\; \\text {mm}^{{2}}$ </tex-math></inline-formula>.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 4","pages":"1900-1906"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Silicon Accumulation-Mode Trench Bidirectional Switch\",\"authors\":\"H. Abnavi;C. Steenge;J. W. Berenschot;N. R. Tas;R. J. E. Hueting\",\"doi\":\"10.1109/TED.2025.3546582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The bidirectional switch, or bidiswitch, is a key component widely used for battery protection. During charging and discharging of the battery, the bidiswitch should be able to handle sufficient current and to block high voltages all in both the directions. In this work, we propose a new type of silicon bidiswitch: the accumulation-mode trench bidiswitch (AM bidiswitch). Due to aggressive cell dimensions (<inline-formula> <tex-math>$\\\\leq 0.6 \\\\; \\\\mu $ </tex-math></inline-formula>m), both the accumulation-mode field effect and the reduced surface field (RESURF) effect can be adopted, so that no separate p-body connection is required, and consequently, minimal specific <sc>on</small>-resistances (<inline-formula> <tex-math>${R}_{\\\\text {on,sp}}$ </tex-math></inline-formula>) and even minimal leakage currents (<inline-formula> <tex-math>${I}_{\\\\text {rev}}$ </tex-math></inline-formula>) can be obtained. Based on a theoretical framework, an optimization guideline is presented using TCAD simulations. The results show <inline-formula> <tex-math>${R}_{\\\\text {on,sp}}$ </tex-math></inline-formula> values ranging from 3.5 to 10.8 m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula>mm2 for stripe (or 2-D) structures and 6.5 to 45.6 m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula>mm2 for gate-all-around (GAA) structures, with breakdown voltages (BVs) ranging from 25 to 75 V. For high temperatures (<inline-formula> <tex-math>${T} = {425} \\\\; \\\\text {K}$ </tex-math></inline-formula>), the obtained minimal <inline-formula> <tex-math>${I}_{\\\\text {rev}}$ </tex-math></inline-formula> ranges from 0.75 to over 5 mA for the stripe structures and from 0.1 to 0.4 mA for the GAA structures both for an active device area of <inline-formula> <tex-math>$1 \\\\; \\\\text {mm}^{{2}}$ </tex-math></inline-formula>.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 4\",\"pages\":\"1900-1906\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10922208/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10922208/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

双向开关是广泛用于电池保护的关键部件。在电池充放电过程中,双开关应能处理足够的电流,并能阻挡两个方向的高压。在这项工作中,我们提出了一种新型的硅双开关:积累模式沟槽双开关(AM双开关)。由于电池尺寸较大($\leq 0.6 \; \mu $ m),可以同时采用累积模式场效应和减少表面场(RESURF)效应,因此不需要单独的p体连接,因此可以获得最小的比导通电阻(${R}_{\text {on,sp}}$)甚至最小的泄漏电流(${I}_{\text {rev}}$)。在理论框架的基础上,通过TCAD仿真给出了优化准则。结果表明,条带(或二维)结构的${R}_{\text {on,sp}}$值为3.5 ~ 10.8 m $\Omega \cdot $ mm2,栅极全能(GAA)结构的值为6.5 ~ 45.6 m $\Omega \cdot $ mm2,击穿电压(bv)范围为25 ~ 75 V。对于高温(${T} = {425} \; \text {K}$),获得的最小${I}_{\text {rev}}$范围从0.75到超过5 mA的条纹结构和从0.1到0.4 mA的GAA结构,两者的有源器件面积$1 \; \text {mm}^{{2}}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New Silicon Accumulation-Mode Trench Bidirectional Switch
The bidirectional switch, or bidiswitch, is a key component widely used for battery protection. During charging and discharging of the battery, the bidiswitch should be able to handle sufficient current and to block high voltages all in both the directions. In this work, we propose a new type of silicon bidiswitch: the accumulation-mode trench bidiswitch (AM bidiswitch). Due to aggressive cell dimensions ( $\leq 0.6 \; \mu $ m), both the accumulation-mode field effect and the reduced surface field (RESURF) effect can be adopted, so that no separate p-body connection is required, and consequently, minimal specific on-resistances ( ${R}_{\text {on,sp}}$ ) and even minimal leakage currents ( ${I}_{\text {rev}}$ ) can be obtained. Based on a theoretical framework, an optimization guideline is presented using TCAD simulations. The results show ${R}_{\text {on,sp}}$ values ranging from 3.5 to 10.8 m $\Omega \cdot $ mm2 for stripe (or 2-D) structures and 6.5 to 45.6 m $\Omega \cdot $ mm2 for gate-all-around (GAA) structures, with breakdown voltages (BVs) ranging from 25 to 75 V. For high temperatures ( ${T} = {425} \; \text {K}$ ), the obtained minimal ${I}_{\text {rev}}$ ranges from 0.75 to over 5 mA for the stripe structures and from 0.1 to 0.4 mA for the GAA structures both for an active device area of $1 \; \text {mm}^{{2}}$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信