基于多外延生长和沟道注入技术的高性能0.17-mΩ⋅cm²/800-V 4H-SiC超结肖特基二极管的演示

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Fengyu Du;Haobo Kang;Hao Yuan;Boyi Bai;Tianyu Shu;Jingyu Li;Yu Zhou;Chao Han;Xiaoyan Tang;Qingwen Song;Yuming Zhang
{"title":"基于多外延生长和沟道注入技术的高性能0.17-mΩ⋅cm²/800-V 4H-SiC超结肖特基二极管的演示","authors":"Fengyu Du;Haobo Kang;Hao Yuan;Boyi Bai;Tianyu Shu;Jingyu Li;Yu Zhou;Chao Han;Xiaoyan Tang;Qingwen Song;Yuming Zhang","doi":"10.1109/TED.2025.3537070","DOIUrl":null,"url":null,"abstract":"This article demonstrates the fabrication of high-performance 4H-silicon carbide (SiC) super-junction (SJ) Schottky diodes utilizing channeled implantation and double epitaxial growth. The diodes, featuring a <inline-formula> <tex-math>$4.5-\\mu $ </tex-math></inline-formula>m-thick drift region and a <inline-formula> <tex-math>$4-\\mu $ </tex-math></inline-formula>m-thick SJ structure, underwent characterization encompassing both material and electrical attributes. After double epitaxial growth, the epitaxial layer showcased a maximum stress of 25.9 MPa. The full-width at half-maximum (FWHM) analysis underscored the exceptional quality of the 4H-SiC crystals across the entire wafer surface (FWHM < 25 arcsec), paralleled by atomic force microscopy (AFM) outcomes revealing an epitaxial layer with excellent smoothness (<inline-formula> <tex-math>${R}_{\\text {q}} \\lt 0.35$ </tex-math></inline-formula> nm). Devices fabricated on these high-quality wafers exhibited consistent performance and superior yield. Electrical property distributions revealed a breakdown voltage (BV) of 800 V alongside a specific <sc>on</small>-resistance (<inline-formula> <tex-math>${R}_{\\text {on},\\text {sp}})$ </tex-math></inline-formula> of 0.17 m<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm2 and a record Baliga figure of merit (BFOM) value of 3.76 GW/cm2 (800 V), subtracting the substrate resistance, exceeding the 1-D theoretical limit of 4H-SiC successfully. Moreover, it is inferred that the channeled implantation technology is an attractive process for fabricating SiC SJ devices.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 4","pages":"1872-1877"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of High-Performance 0.17-mΩ⋅cm²/800-V 4H-SiC Super-Junction Schottky Diodes via Multiepitaxial Growth and Channeled Implantation Techniques\",\"authors\":\"Fengyu Du;Haobo Kang;Hao Yuan;Boyi Bai;Tianyu Shu;Jingyu Li;Yu Zhou;Chao Han;Xiaoyan Tang;Qingwen Song;Yuming Zhang\",\"doi\":\"10.1109/TED.2025.3537070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article demonstrates the fabrication of high-performance 4H-silicon carbide (SiC) super-junction (SJ) Schottky diodes utilizing channeled implantation and double epitaxial growth. The diodes, featuring a <inline-formula> <tex-math>$4.5-\\\\mu $ </tex-math></inline-formula>m-thick drift region and a <inline-formula> <tex-math>$4-\\\\mu $ </tex-math></inline-formula>m-thick SJ structure, underwent characterization encompassing both material and electrical attributes. After double epitaxial growth, the epitaxial layer showcased a maximum stress of 25.9 MPa. The full-width at half-maximum (FWHM) analysis underscored the exceptional quality of the 4H-SiC crystals across the entire wafer surface (FWHM < 25 arcsec), paralleled by atomic force microscopy (AFM) outcomes revealing an epitaxial layer with excellent smoothness (<inline-formula> <tex-math>${R}_{\\\\text {q}} \\\\lt 0.35$ </tex-math></inline-formula> nm). Devices fabricated on these high-quality wafers exhibited consistent performance and superior yield. Electrical property distributions revealed a breakdown voltage (BV) of 800 V alongside a specific <sc>on</small>-resistance (<inline-formula> <tex-math>${R}_{\\\\text {on},\\\\text {sp}})$ </tex-math></inline-formula> of 0.17 m<inline-formula> <tex-math>$\\\\Omega \\\\cdot $ </tex-math></inline-formula>cm2 and a record Baliga figure of merit (BFOM) value of 3.76 GW/cm2 (800 V), subtracting the substrate resistance, exceeding the 1-D theoretical limit of 4H-SiC successfully. Moreover, it is inferred that the channeled implantation technology is an attractive process for fabricating SiC SJ devices.\",\"PeriodicalId\":13092,\"journal\":{\"name\":\"IEEE Transactions on Electron Devices\",\"volume\":\"72 4\",\"pages\":\"1872-1877\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Electron Devices\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10884822/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10884822/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了利用沟道注入和双外延生长制备高性能4h碳化硅(SiC)超结肖特基二极管的方法。该二极管具有$4.5-\mu $ m厚的漂移区和$4-\mu $ m厚的SJ结构,并进行了包括材料和电学属性在内的表征。双外延生长后,外延层的最大应力为25.9 MPa。半最大全宽(FWHM)分析强调了整个晶圆表面的4H-SiC晶体的卓越质量(FWHM < 25弧秒),与原子力显微镜(AFM)结果平行,显示出具有优异平滑度的外延层(${R}_{\text {q}} \lt 0.35$ nm)。在这些高质量晶圆上制造的器件表现出一致的性能和优越的产量。电学性能分布显示,击穿电压(BV)为800 V,特定导通电阻(${R}_{\text {on},\text {sp}})$为0.17 m $\Omega \cdot $ cm2)和创纪录的Baliga优值(bom)为3.76 GW/cm2 (800 V),减去衬底电阻,成功超越了4H-SiC的一维理论极限。此外,推测沟道注入技术是一种有吸引力的制造SiC SJ器件的工艺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demonstration of High-Performance 0.17-mΩ⋅cm²/800-V 4H-SiC Super-Junction Schottky Diodes via Multiepitaxial Growth and Channeled Implantation Techniques
This article demonstrates the fabrication of high-performance 4H-silicon carbide (SiC) super-junction (SJ) Schottky diodes utilizing channeled implantation and double epitaxial growth. The diodes, featuring a $4.5-\mu $ m-thick drift region and a $4-\mu $ m-thick SJ structure, underwent characterization encompassing both material and electrical attributes. After double epitaxial growth, the epitaxial layer showcased a maximum stress of 25.9 MPa. The full-width at half-maximum (FWHM) analysis underscored the exceptional quality of the 4H-SiC crystals across the entire wafer surface (FWHM < 25 arcsec), paralleled by atomic force microscopy (AFM) outcomes revealing an epitaxial layer with excellent smoothness ( ${R}_{\text {q}} \lt 0.35$ nm). Devices fabricated on these high-quality wafers exhibited consistent performance and superior yield. Electrical property distributions revealed a breakdown voltage (BV) of 800 V alongside a specific on-resistance ( ${R}_{\text {on},\text {sp}})$ of 0.17 m $\Omega \cdot $ cm2 and a record Baliga figure of merit (BFOM) value of 3.76 GW/cm2 (800 V), subtracting the substrate resistance, exceeding the 1-D theoretical limit of 4H-SiC successfully. Moreover, it is inferred that the channeled implantation technology is an attractive process for fabricating SiC SJ devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信