多通道非晶氧化物薄膜晶体管具有 67 cm2 V-1 s-1 的高迁移率和出色的稳定性

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammad Masum Billah, Md Mobaidul Islam, Sunaina Priyadarshi, Jung Bae Kim, Yang Ho Bae, Rodney Lim, Dejiu Fan, Zero Hung, Dong Kil Yim, Soo Yong Choi, Youron Lin, Juergen Grillmayer, Custer Ma, Lynn Yang, Julian Chen, Jin Jang
{"title":"多通道非晶氧化物薄膜晶体管具有 67 cm2 V-1 s-1 的高迁移率和出色的稳定性","authors":"Mohammad Masum Billah, Md Mobaidul Islam, Sunaina Priyadarshi, Jung Bae Kim, Yang Ho Bae, Rodney Lim, Dejiu Fan, Zero Hung, Dong Kil Yim, Soo Yong Choi, Youron Lin, Juergen Grillmayer, Custer Ma, Lynn Yang, Julian Chen, Jin Jang","doi":"10.1002/aelm.202400766","DOIUrl":null,"url":null,"abstract":"Multi-channel amorphous oxide thin-film transistors (TFTs) with dual gate (DG), coplanar structure are studied. The multi-channel consists of a top amorphous indium gallium zinc tin oxide (a-IGZTO) and a very thin amorphous indium zinc oxide (a-IZO) bottom layer. The fabricated TFTs exhibit high field-effect mobility (µ<sub>FE</sub>) ≈67.1 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, and excellent stability under positive bias temperature stress (PBTS). The band diagram of the multi-channel TFT is presented based on UV photoelectron spectroscopy, X-ray photoelectron spectroscopy, and UV–vis spectroscopy measurements. The PBTS robustness is interpreted as the formation of 2D electron gas (2DEG) at the a-IGZTO/a-IZO hetero-interface which extends to the bulk a-IZO layer. From thermalization energy (E<sub>Th</sub>) analysis with the energy barrier to defect formation under PBTS, the multi-channel TFT exhibits the largest E<sub>Th</sub> of 0.84 eV, which indicates that more stress energy is needed for threshold voltage shift during PBTS in the TFTs as compared to single-channel TFTs.","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"73 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Channel, Amorphous Oxide Thin-Film Transistor Exhibiting High Mobility of 67 cm2 V−1 s−1 and Excellent Stability\",\"authors\":\"Mohammad Masum Billah, Md Mobaidul Islam, Sunaina Priyadarshi, Jung Bae Kim, Yang Ho Bae, Rodney Lim, Dejiu Fan, Zero Hung, Dong Kil Yim, Soo Yong Choi, Youron Lin, Juergen Grillmayer, Custer Ma, Lynn Yang, Julian Chen, Jin Jang\",\"doi\":\"10.1002/aelm.202400766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-channel amorphous oxide thin-film transistors (TFTs) with dual gate (DG), coplanar structure are studied. The multi-channel consists of a top amorphous indium gallium zinc tin oxide (a-IGZTO) and a very thin amorphous indium zinc oxide (a-IZO) bottom layer. The fabricated TFTs exhibit high field-effect mobility (µ<sub>FE</sub>) ≈67.1 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, and excellent stability under positive bias temperature stress (PBTS). The band diagram of the multi-channel TFT is presented based on UV photoelectron spectroscopy, X-ray photoelectron spectroscopy, and UV–vis spectroscopy measurements. The PBTS robustness is interpreted as the formation of 2D electron gas (2DEG) at the a-IGZTO/a-IZO hetero-interface which extends to the bulk a-IZO layer. From thermalization energy (E<sub>Th</sub>) analysis with the energy barrier to defect formation under PBTS, the multi-channel TFT exhibits the largest E<sub>Th</sub> of 0.84 eV, which indicates that more stress energy is needed for threshold voltage shift during PBTS in the TFTs as compared to single-channel TFTs.\",\"PeriodicalId\":110,\"journal\":{\"name\":\"Advanced Electronic Materials\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Electronic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aelm.202400766\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aelm.202400766","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了具有双栅共面结构的多通道非晶氧化物薄膜晶体管(TFTs)。该多通道由顶部非晶态氧化铟镓锌锡(a- igzto)和极薄的非晶态氧化铟锌(a- izo)底层组成。制备的tft具有较高的场效应迁移率(µFE)≈67.1 cm2 V−1 s−1,并且在正偏置温度应力(PBTS)下具有优异的稳定性。基于紫外光电子能谱、x射线光电子能谱和紫外可见光谱测量,给出了多通道TFT的能带图。PBTS的鲁棒性解释为在a-IGZTO/a-IZO异质界面处形成二维电子气体(2DEG),并延伸到体a-IZO层。从热化能(ETh)和缺陷形成的能垒分析来看,多通道TFT表现出最大的热化能(ETh),为0.84 eV,这表明与单通道TFT相比,多通道TFT在PBTS过程中需要更多的应力能来实现阈值电压移动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Multi-Channel, Amorphous Oxide Thin-Film Transistor Exhibiting High Mobility of 67 cm2 V−1 s−1 and Excellent Stability

Multi-Channel, Amorphous Oxide Thin-Film Transistor Exhibiting High Mobility of 67 cm2 V−1 s−1 and Excellent Stability
Multi-channel amorphous oxide thin-film transistors (TFTs) with dual gate (DG), coplanar structure are studied. The multi-channel consists of a top amorphous indium gallium zinc tin oxide (a-IGZTO) and a very thin amorphous indium zinc oxide (a-IZO) bottom layer. The fabricated TFTs exhibit high field-effect mobility (µFE) ≈67.1 cm2 V−1 s−1, and excellent stability under positive bias temperature stress (PBTS). The band diagram of the multi-channel TFT is presented based on UV photoelectron spectroscopy, X-ray photoelectron spectroscopy, and UV–vis spectroscopy measurements. The PBTS robustness is interpreted as the formation of 2D electron gas (2DEG) at the a-IGZTO/a-IZO hetero-interface which extends to the bulk a-IZO layer. From thermalization energy (ETh) analysis with the energy barrier to defect formation under PBTS, the multi-channel TFT exhibits the largest ETh of 0.84 eV, which indicates that more stress energy is needed for threshold voltage shift during PBTS in the TFTs as compared to single-channel TFTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信