Lichun Liu, Ziye Zhang, Zihao Li, Hao Wang, Zhenxing Li, Hong Lin
{"title":"虾原肌球蛋白α-二羰基糖化及构象-致敏关系构象和表位改变的研究","authors":"Lichun Liu, Ziye Zhang, Zihao Li, Hao Wang, Zhenxing Li, Hong Lin","doi":"10.1016/j.foodchem.2025.144094","DOIUrl":null,"url":null,"abstract":"<div><div>The incidence of shrimp-induced food allergy is increasing yearly. Glycation has been reported to reduce shrimp tropomyosin (TM) allergenicity, and how advanced glycation end products (AGEs) impact TM allergenicity has garnered worldwide attention. This work investigated the conformational and epitope alterations of TM under α-dicarbonyl compounds (glyoxal (GO), methylglyoxal (MGO), butanedione (BU)) glycation and conformation-allergenicity relationship. As the results, α-dicarbonyl compounds glycation induced high glycation and TM conformational alterations. AGEs glycation sites on TM epitopes were identified by HPLC-MS/MS, with epitope destruction rates of 62.5 %, 50 % and 62.5 % for GO-TM, MGO-TM and BU-TM, respectively. Immunological results revealed TM glycated by α-dicarbonyls compounds performed weaker IgE binding by 33.38–33.86 %, while GO and MGO reduced IgG binding by 63.60 % and 77.72 %, respectively, suggesting α-dicarbonyls compounds reduced TM allergenicity via AGEs-induced epitope loss and conformational changes. This investigation could provide novel insights into how α-dicarbonyls compounds reduce TM allergenicity and prevent shrimp-induced allergy.</div></div>","PeriodicalId":318,"journal":{"name":"Food Chemistry","volume":"481 ","pages":"Article 144094"},"PeriodicalIF":9.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of conformational and epitope alterations of shrimp tropomyosin under α-dicarbonyl glycation and conformation-allergenicity relationship\",\"authors\":\"Lichun Liu, Ziye Zhang, Zihao Li, Hao Wang, Zhenxing Li, Hong Lin\",\"doi\":\"10.1016/j.foodchem.2025.144094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The incidence of shrimp-induced food allergy is increasing yearly. Glycation has been reported to reduce shrimp tropomyosin (TM) allergenicity, and how advanced glycation end products (AGEs) impact TM allergenicity has garnered worldwide attention. This work investigated the conformational and epitope alterations of TM under α-dicarbonyl compounds (glyoxal (GO), methylglyoxal (MGO), butanedione (BU)) glycation and conformation-allergenicity relationship. As the results, α-dicarbonyl compounds glycation induced high glycation and TM conformational alterations. AGEs glycation sites on TM epitopes were identified by HPLC-MS/MS, with epitope destruction rates of 62.5 %, 50 % and 62.5 % for GO-TM, MGO-TM and BU-TM, respectively. Immunological results revealed TM glycated by α-dicarbonyls compounds performed weaker IgE binding by 33.38–33.86 %, while GO and MGO reduced IgG binding by 63.60 % and 77.72 %, respectively, suggesting α-dicarbonyls compounds reduced TM allergenicity via AGEs-induced epitope loss and conformational changes. This investigation could provide novel insights into how α-dicarbonyls compounds reduce TM allergenicity and prevent shrimp-induced allergy.</div></div>\",\"PeriodicalId\":318,\"journal\":{\"name\":\"Food Chemistry\",\"volume\":\"481 \",\"pages\":\"Article 144094\"},\"PeriodicalIF\":9.8000,\"publicationDate\":\"2025-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0308814625013457\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308814625013457","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Investigation of conformational and epitope alterations of shrimp tropomyosin under α-dicarbonyl glycation and conformation-allergenicity relationship
The incidence of shrimp-induced food allergy is increasing yearly. Glycation has been reported to reduce shrimp tropomyosin (TM) allergenicity, and how advanced glycation end products (AGEs) impact TM allergenicity has garnered worldwide attention. This work investigated the conformational and epitope alterations of TM under α-dicarbonyl compounds (glyoxal (GO), methylglyoxal (MGO), butanedione (BU)) glycation and conformation-allergenicity relationship. As the results, α-dicarbonyl compounds glycation induced high glycation and TM conformational alterations. AGEs glycation sites on TM epitopes were identified by HPLC-MS/MS, with epitope destruction rates of 62.5 %, 50 % and 62.5 % for GO-TM, MGO-TM and BU-TM, respectively. Immunological results revealed TM glycated by α-dicarbonyls compounds performed weaker IgE binding by 33.38–33.86 %, while GO and MGO reduced IgG binding by 63.60 % and 77.72 %, respectively, suggesting α-dicarbonyls compounds reduced TM allergenicity via AGEs-induced epitope loss and conformational changes. This investigation could provide novel insights into how α-dicarbonyls compounds reduce TM allergenicity and prevent shrimp-induced allergy.
期刊介绍:
Food Chemistry publishes original research papers dealing with the advancement of the chemistry and biochemistry of foods or the analytical methods/ approach used. All papers should focus on the novelty of the research carried out.