György Schneider, Bettina Schweitzer, Anita S Steinbach, Ágnes S Hodován, Marianna Horváth, Eszter Bakó, Anna Mayer, Szilárd Pál
{"title":"西印度香茅(Cymbopogon citratus)精油软膏在治疗凹陷性角质溶解症中的治疗潜力。","authors":"György Schneider, Bettina Schweitzer, Anita S Steinbach, Ágnes S Hodován, Marianna Horváth, Eszter Bakó, Anna Mayer, Szilárd Pál","doi":"10.3390/antibiotics14030241","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Due to their antibacterial activities, essential oils can be potential alternatives to antibiotics in certain cases. West Indian lemongrass (<i>Cymbopogon citratus</i>) essential oil (LEO) is effective against a broad range of bacteria by inhibiting spore formation, and is considered safe. In this study, we demonstrated its therapeutical potential in the treatment of pitted keratolysis (PK), a superficial skin infection affecting the pressure-bearing areas of plantar surfaces. <b>Methods:</b> For in vitro antibacterial efficacy testing, LEO was mixed into different ointment bases, including Hydrogelum methylcellulose FoNo VIII., Ungentum oleosum FoNo VIII. (Ung. oleoso), Unguentum stearini FoNo VIII. (Ung. stearin), and Vaselinum cholesterinatum FoNo VIII. (Vasel. cholest.), at different concentrations of 1, 3, and 5%. These formulations were tested on representatives of three bacterial species associated with PK: <i>Kytococcus sedentarius</i>, <i>Dermatophilus congolensis</i>, and <i>Bacillus thuringiensis</i>. <b>Results:</b> In the in vitro tests, Hydrogelum methylcellulose (HM) gel best supported the antibacterial effects of LEO, reducing the number of living bacteria on agar plates by 4-5 orders of magnitude in a concentration-dependent manner during the 30 min exposure times. This was also confirmed by the Franz diffusion cell drug release test; after 30 min, several active compounds could be detected in the HM samples, in contrast to the other bases. Shelf-life experiments showed that the HM base supported the antibacterial features of 3% LEO for at least 2 years without significant loss of efficacy. <b>Conclusions:</b> Our study highlights that ointments containing essential oils potentially have a place in the treatment of PK. Therefore, antibiotics may potentially be replaced for the treatment of PK, thereby reducing environmental antibiotic pressure, which is one of the driving forces behind the spread of antibiotic resistance.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939757/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Therapeutic Potential of West Indian Lemongrass (<i>Cymbopogon citratus</i>) Essential Oil-Based Ointment in the Treatment of Pitted Keratolysis.\",\"authors\":\"György Schneider, Bettina Schweitzer, Anita S Steinbach, Ágnes S Hodován, Marianna Horváth, Eszter Bakó, Anna Mayer, Szilárd Pál\",\"doi\":\"10.3390/antibiotics14030241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background:</b> Due to their antibacterial activities, essential oils can be potential alternatives to antibiotics in certain cases. West Indian lemongrass (<i>Cymbopogon citratus</i>) essential oil (LEO) is effective against a broad range of bacteria by inhibiting spore formation, and is considered safe. In this study, we demonstrated its therapeutical potential in the treatment of pitted keratolysis (PK), a superficial skin infection affecting the pressure-bearing areas of plantar surfaces. <b>Methods:</b> For in vitro antibacterial efficacy testing, LEO was mixed into different ointment bases, including Hydrogelum methylcellulose FoNo VIII., Ungentum oleosum FoNo VIII. (Ung. oleoso), Unguentum stearini FoNo VIII. (Ung. stearin), and Vaselinum cholesterinatum FoNo VIII. (Vasel. cholest.), at different concentrations of 1, 3, and 5%. These formulations were tested on representatives of three bacterial species associated with PK: <i>Kytococcus sedentarius</i>, <i>Dermatophilus congolensis</i>, and <i>Bacillus thuringiensis</i>. <b>Results:</b> In the in vitro tests, Hydrogelum methylcellulose (HM) gel best supported the antibacterial effects of LEO, reducing the number of living bacteria on agar plates by 4-5 orders of magnitude in a concentration-dependent manner during the 30 min exposure times. This was also confirmed by the Franz diffusion cell drug release test; after 30 min, several active compounds could be detected in the HM samples, in contrast to the other bases. Shelf-life experiments showed that the HM base supported the antibacterial features of 3% LEO for at least 2 years without significant loss of efficacy. <b>Conclusions:</b> Our study highlights that ointments containing essential oils potentially have a place in the treatment of PK. Therefore, antibiotics may potentially be replaced for the treatment of PK, thereby reducing environmental antibiotic pressure, which is one of the driving forces behind the spread of antibiotic resistance.</p>\",\"PeriodicalId\":54246,\"journal\":{\"name\":\"Antibiotics-Basel\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939757/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibiotics-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antibiotics14030241\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14030241","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
The Therapeutic Potential of West Indian Lemongrass (Cymbopogon citratus) Essential Oil-Based Ointment in the Treatment of Pitted Keratolysis.
Background: Due to their antibacterial activities, essential oils can be potential alternatives to antibiotics in certain cases. West Indian lemongrass (Cymbopogon citratus) essential oil (LEO) is effective against a broad range of bacteria by inhibiting spore formation, and is considered safe. In this study, we demonstrated its therapeutical potential in the treatment of pitted keratolysis (PK), a superficial skin infection affecting the pressure-bearing areas of plantar surfaces. Methods: For in vitro antibacterial efficacy testing, LEO was mixed into different ointment bases, including Hydrogelum methylcellulose FoNo VIII., Ungentum oleosum FoNo VIII. (Ung. oleoso), Unguentum stearini FoNo VIII. (Ung. stearin), and Vaselinum cholesterinatum FoNo VIII. (Vasel. cholest.), at different concentrations of 1, 3, and 5%. These formulations were tested on representatives of three bacterial species associated with PK: Kytococcus sedentarius, Dermatophilus congolensis, and Bacillus thuringiensis. Results: In the in vitro tests, Hydrogelum methylcellulose (HM) gel best supported the antibacterial effects of LEO, reducing the number of living bacteria on agar plates by 4-5 orders of magnitude in a concentration-dependent manner during the 30 min exposure times. This was also confirmed by the Franz diffusion cell drug release test; after 30 min, several active compounds could be detected in the HM samples, in contrast to the other bases. Shelf-life experiments showed that the HM base supported the antibacterial features of 3% LEO for at least 2 years without significant loss of efficacy. Conclusions: Our study highlights that ointments containing essential oils potentially have a place in the treatment of PK. Therefore, antibiotics may potentially be replaced for the treatment of PK, thereby reducing environmental antibiotic pressure, which is one of the driving forces behind the spread of antibiotic resistance.
Antibiotics-BaselPharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍:
Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.