从奥地利矿井水中分离的细菌中的抗菌和抗金属基因。

IF 4.3 2区 医学 Q1 INFECTIOUS DISEASES
Jakob Prochaska, Heinz Reitner, Christian Benold, Alfred Stadtschnitzer, Buyantogtokh Choijilsuren, Dmitrij Sofka, Friederike Hilbert, Cátia Pacífico
{"title":"从奥地利矿井水中分离的细菌中的抗菌和抗金属基因。","authors":"Jakob Prochaska, Heinz Reitner, Christian Benold, Alfred Stadtschnitzer, Buyantogtokh Choijilsuren, Dmitrij Sofka, Friederike Hilbert, Cátia Pacífico","doi":"10.3390/antibiotics14030262","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Microbiomes surrounding mining sites have been found to harbor both antibiotic resistance genes and metal resistance genes. Within the \"One Health\" framework, which spans human, veterinary and environmental health, it is crucial to determine whether bacterial metal resistance (MR) genes can independently trigger antimicrobial resistance (AMR) or if they are linked to AMR genes and co-transferred horizontally. <b>Methods and Results</b>: Bacteria were isolated from an active and an inactive mining site in the alpine region of Austria. Most of the isolated bacteria harbored antimicrobial and metal resistance genes (88%). MALDI-TOF and whole genome sequencing (WGS) revealed that species from the <i>Pseudomonadaceae</i> family were the most identified, accounting for 32.5%. All <i>Pseudomonas</i> spp. carried AMR genes from the <i>mex</i> family, which encode multidrug efflux pumps. β-lactamase production encoded by <i>bla</i> genes were detected as the second most common (26%). The same AMR genes have often been detected within a particular bacterial genus. No tetracycline resistance gene has been identified. Among metal resistance genes, <i>rufB</i> (tellurium resistance) was the most prevalent (33%), followed by <i>recGM</i> (selenium resistance, 30%), <i>copA</i> (copper resistance, 26%), and <i>mgtA</i> (magnesium and cobalt resistance, 26%). Notably, the <i>mer</i> gene family (mercury resistance) was found exclusively in isolates from the inactive mining site (<i>n</i> = 6). In addition, genes associated with both antimicrobial and metal resistance, including <i>arsBM</i>, <i>acrD</i>, and the <i>mer</i> operon, were identified in 19 out of the 43 isolates. <b>Conclusions</b>: Bacteria isolated from mine water harbored both MR and AMR genes. Given the exceptional diversity of bacterial species in these settings, 16S rRNA gene sequence analysis is the recommended method for accurate species identification. Moreover, the presence of multi-drug transporters and transferable resistance genes against critically important antimicrobials such as fluoroquinolones and colistin identified in these environmental bacteria emphasizes the importance of retrieving environmental data within the \"One Health\" framework.</p>","PeriodicalId":54246,"journal":{"name":"Antibiotics-Basel","volume":"14 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939749/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antimicrobial and Metal Resistance Genes in Bacteria Isolated from Mine Water in Austria.\",\"authors\":\"Jakob Prochaska, Heinz Reitner, Christian Benold, Alfred Stadtschnitzer, Buyantogtokh Choijilsuren, Dmitrij Sofka, Friederike Hilbert, Cátia Pacífico\",\"doi\":\"10.3390/antibiotics14030262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> Microbiomes surrounding mining sites have been found to harbor both antibiotic resistance genes and metal resistance genes. Within the \\\"One Health\\\" framework, which spans human, veterinary and environmental health, it is crucial to determine whether bacterial metal resistance (MR) genes can independently trigger antimicrobial resistance (AMR) or if they are linked to AMR genes and co-transferred horizontally. <b>Methods and Results</b>: Bacteria were isolated from an active and an inactive mining site in the alpine region of Austria. Most of the isolated bacteria harbored antimicrobial and metal resistance genes (88%). MALDI-TOF and whole genome sequencing (WGS) revealed that species from the <i>Pseudomonadaceae</i> family were the most identified, accounting for 32.5%. All <i>Pseudomonas</i> spp. carried AMR genes from the <i>mex</i> family, which encode multidrug efflux pumps. β-lactamase production encoded by <i>bla</i> genes were detected as the second most common (26%). The same AMR genes have often been detected within a particular bacterial genus. No tetracycline resistance gene has been identified. Among metal resistance genes, <i>rufB</i> (tellurium resistance) was the most prevalent (33%), followed by <i>recGM</i> (selenium resistance, 30%), <i>copA</i> (copper resistance, 26%), and <i>mgtA</i> (magnesium and cobalt resistance, 26%). Notably, the <i>mer</i> gene family (mercury resistance) was found exclusively in isolates from the inactive mining site (<i>n</i> = 6). In addition, genes associated with both antimicrobial and metal resistance, including <i>arsBM</i>, <i>acrD</i>, and the <i>mer</i> operon, were identified in 19 out of the 43 isolates. <b>Conclusions</b>: Bacteria isolated from mine water harbored both MR and AMR genes. Given the exceptional diversity of bacterial species in these settings, 16S rRNA gene sequence analysis is the recommended method for accurate species identification. Moreover, the presence of multi-drug transporters and transferable resistance genes against critically important antimicrobials such as fluoroquinolones and colistin identified in these environmental bacteria emphasizes the importance of retrieving environmental data within the \\\"One Health\\\" framework.</p>\",\"PeriodicalId\":54246,\"journal\":{\"name\":\"Antibiotics-Basel\",\"volume\":\"14 3\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11939749/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Antibiotics-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/antibiotics14030262\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/antibiotics14030262","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

摘要

背景/目的:矿区周围的微生物群被发现含有抗生素耐药基因和金属耐药基因。在涵盖人类、兽医和环境卫生的“同一个健康”框架内,至关重要的是确定细菌金属耐药性(MR)基因是否能够独立触发抗菌素耐药性(AMR),或者它们是否与抗菌素耐药性基因相关联并横向共同转移。方法与结果:分别从奥地利高山地区的一个活跃矿区和一个不活跃矿区分离细菌。大多数分离的细菌携带抗微生物和金属抗性基因(88%)。MALDI-TOF和全基因组测序(WGS)结果显示,假单胞菌科的种类最多,占32.5%。所有假单胞菌都携带来自mex家族的AMR基因,该基因编码多药物外排泵。由bla基因编码的β-内酰胺酶产生是第二常见的(26%)。在一个特定的细菌属中经常检测到相同的抗菌素耐药性基因。未发现四环素耐药基因。在金属抗性基因中,rufB(抗碲)最为普遍(33%),其次是recGM(抗硒,30%),copA(抗铜,26%)和mgtA(抗镁和钴,26%)。值得注意的是,mer基因家族(汞抗性)仅在非活性矿区的分离株中被发现(n = 6)。此外,43株分离株中有19株被鉴定出与抗菌和金属抗性相关的基因,包括arsBM、acrD和mer操纵子。结论:从矿井水中分离的细菌同时携带MR和AMR基因。考虑到这些环境中细菌物种的异常多样性,16S rRNA基因序列分析是准确鉴定物种的推荐方法。此外,在这些环境细菌中发现的针对氟喹诺酮类药物和粘菌素等至关重要的抗菌素的多药物转运体和可转移耐药基因的存在,强调了在“同一个健康”框架内检索环境数据的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antimicrobial and Metal Resistance Genes in Bacteria Isolated from Mine Water in Austria.

Background/Objectives: Microbiomes surrounding mining sites have been found to harbor both antibiotic resistance genes and metal resistance genes. Within the "One Health" framework, which spans human, veterinary and environmental health, it is crucial to determine whether bacterial metal resistance (MR) genes can independently trigger antimicrobial resistance (AMR) or if they are linked to AMR genes and co-transferred horizontally. Methods and Results: Bacteria were isolated from an active and an inactive mining site in the alpine region of Austria. Most of the isolated bacteria harbored antimicrobial and metal resistance genes (88%). MALDI-TOF and whole genome sequencing (WGS) revealed that species from the Pseudomonadaceae family were the most identified, accounting for 32.5%. All Pseudomonas spp. carried AMR genes from the mex family, which encode multidrug efflux pumps. β-lactamase production encoded by bla genes were detected as the second most common (26%). The same AMR genes have often been detected within a particular bacterial genus. No tetracycline resistance gene has been identified. Among metal resistance genes, rufB (tellurium resistance) was the most prevalent (33%), followed by recGM (selenium resistance, 30%), copA (copper resistance, 26%), and mgtA (magnesium and cobalt resistance, 26%). Notably, the mer gene family (mercury resistance) was found exclusively in isolates from the inactive mining site (n = 6). In addition, genes associated with both antimicrobial and metal resistance, including arsBM, acrD, and the mer operon, were identified in 19 out of the 43 isolates. Conclusions: Bacteria isolated from mine water harbored both MR and AMR genes. Given the exceptional diversity of bacterial species in these settings, 16S rRNA gene sequence analysis is the recommended method for accurate species identification. Moreover, the presence of multi-drug transporters and transferable resistance genes against critically important antimicrobials such as fluoroquinolones and colistin identified in these environmental bacteria emphasizes the importance of retrieving environmental data within the "One Health" framework.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Antibiotics-Basel
Antibiotics-Basel Pharmacology, Toxicology and Pharmaceutics-General Pharmacology, Toxicology and Pharmaceutics
CiteScore
7.30
自引率
14.60%
发文量
1547
审稿时长
11 weeks
期刊介绍: Antibiotics (ISSN 2079-6382) is an open access, peer reviewed journal on all aspects of antibiotics. Antibiotics is a multi-disciplinary journal encompassing the general fields of biochemistry, chemistry, genetics, microbiology and pharmacology. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信