LungNet-ViT:利用胸部x线片的多阶段视觉转换模型进行有效的肺部疾病分类。

IF 1.7 3区 医学 Q3 INSTRUMENTS & INSTRUMENTATION
Journal of X-Ray Science and Technology Pub Date : 2025-07-01 Epub Date: 2025-03-28 DOI:10.1177/08953996251320262
V Padmavathi, Kavitha Ganesan
{"title":"LungNet-ViT:利用胸部x线片的多阶段视觉转换模型进行有效的肺部疾病分类。","authors":"V Padmavathi, Kavitha Ganesan","doi":"10.1177/08953996251320262","DOIUrl":null,"url":null,"abstract":"<p><p>This research introduces a Multistage-Vision Transformer (Multistage-ViT) model for precisely classifying various lung diseases using chest radiographic (CXR) images. The dataset in the proposed method includes four classes: Normal, COVID-19, Viral Pneumonia and Lung Opacity. This model demonstrates its efficacy on imbalanced and balanced datasets by enhancing classifier accuracy through deep feature extraction. It integrates backbone models with the ViT architecture, creating rigorously hybrid configurations compared to their standalone counterparts. These hybrid models utilize optimized features for classification, significantly improving their performance. Notably, the multistage-ViT model achieved accuracies of 99.93% on an imbalanced dataset and 99.97% on a balanced dataset using the InceptionV3 combined with the ViT model. These findings highlight the superior accuracy and robustness of multistage-ViT models, underscoring their potential to enhance lung disease classification through advanced feature extraction and model integration techniques. The proposed model effectively demonstrates the benefits of employing ViT for deep feature extraction from CXR images.</p>","PeriodicalId":49948,"journal":{"name":"Journal of X-Ray Science and Technology","volume":" ","pages":"742-759"},"PeriodicalIF":1.7000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LungNet-ViT: Efficient lung disease classification using a multistage vision transformer model from chest radiographs.\",\"authors\":\"V Padmavathi, Kavitha Ganesan\",\"doi\":\"10.1177/08953996251320262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This research introduces a Multistage-Vision Transformer (Multistage-ViT) model for precisely classifying various lung diseases using chest radiographic (CXR) images. The dataset in the proposed method includes four classes: Normal, COVID-19, Viral Pneumonia and Lung Opacity. This model demonstrates its efficacy on imbalanced and balanced datasets by enhancing classifier accuracy through deep feature extraction. It integrates backbone models with the ViT architecture, creating rigorously hybrid configurations compared to their standalone counterparts. These hybrid models utilize optimized features for classification, significantly improving their performance. Notably, the multistage-ViT model achieved accuracies of 99.93% on an imbalanced dataset and 99.97% on a balanced dataset using the InceptionV3 combined with the ViT model. These findings highlight the superior accuracy and robustness of multistage-ViT models, underscoring their potential to enhance lung disease classification through advanced feature extraction and model integration techniques. The proposed model effectively demonstrates the benefits of employing ViT for deep feature extraction from CXR images.</p>\",\"PeriodicalId\":49948,\"journal\":{\"name\":\"Journal of X-Ray Science and Technology\",\"volume\":\" \",\"pages\":\"742-759\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of X-Ray Science and Technology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/08953996251320262\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of X-Ray Science and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/08953996251320262","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种多级视觉转换器(Multistage-ViT)模型,用于利用胸部x线摄影(CXR)图像对各种肺部疾病进行精确分类。该方法的数据集包括四类:正常、COVID-19、病毒性肺炎和肺不透明。该模型通过深度特征提取来提高分类器的准确率,证明了其在不平衡和平衡数据集上的有效性。它将骨干模型与ViT体系结构集成在一起,与独立模型相比,创建了严格的混合配置。这些混合模型利用优化的特征进行分类,显著提高了它们的性能。值得注意的是,使用与ViT模型相结合的InceptionV3, multistage-ViT模型在不平衡数据集上实现了99.93%的准确率,在平衡数据集上实现了99.97%的准确率。这些发现突出了多阶段vit模型优越的准确性和鲁棒性,强调了它们通过先进的特征提取和模型集成技术增强肺部疾病分类的潜力。该模型有效地证明了利用ViT对CXR图像进行深度特征提取的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LungNet-ViT: Efficient lung disease classification using a multistage vision transformer model from chest radiographs.

This research introduces a Multistage-Vision Transformer (Multistage-ViT) model for precisely classifying various lung diseases using chest radiographic (CXR) images. The dataset in the proposed method includes four classes: Normal, COVID-19, Viral Pneumonia and Lung Opacity. This model demonstrates its efficacy on imbalanced and balanced datasets by enhancing classifier accuracy through deep feature extraction. It integrates backbone models with the ViT architecture, creating rigorously hybrid configurations compared to their standalone counterparts. These hybrid models utilize optimized features for classification, significantly improving their performance. Notably, the multistage-ViT model achieved accuracies of 99.93% on an imbalanced dataset and 99.97% on a balanced dataset using the InceptionV3 combined with the ViT model. These findings highlight the superior accuracy and robustness of multistage-ViT models, underscoring their potential to enhance lung disease classification through advanced feature extraction and model integration techniques. The proposed model effectively demonstrates the benefits of employing ViT for deep feature extraction from CXR images.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
23.30%
发文量
150
审稿时长
3 months
期刊介绍: Research areas within the scope of the journal include: Interaction of x-rays with matter: x-ray phenomena, biological effects of radiation, radiation safety and optical constants X-ray sources: x-rays from synchrotrons, x-ray lasers, plasmas, and other sources, conventional or unconventional Optical elements: grazing incidence optics, multilayer mirrors, zone plates, gratings, other diffraction optics Optical instruments: interferometers, spectrometers, microscopes, telescopes, microprobes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信